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Basis splines

Logic:
@ map x; — hp(x;)  (x; into M basis functions)
@ estimate f(x)  (curve, a weighted sum of hpy(x)):

mhm(Xi) = Bh(x;)
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where /3 = {31 ,Bo, ... ,Bm} are simply regression coefficients.

Features of B-splines
@ shapes can be described by linear functions of 3
@ hm(x) has local support, 8, has local effect
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Basis splines, basic logic

@ Given a choice of knot locations {\1, ..., Ay} and polynomial order
k

@ Decompose x; into M + 2 basis functions, with mth

% (Amsj = X)
hmic1(X) = Amaks1 — Ai)
j=0 Hg—(;,/;&j()‘m-&-j = Am+1)

@ for a vector of spline coefficients,

B: [Bhﬁb---aﬂl\m]

@ f(x) is a weighted sum of hp(x)

M
1) =" Bmhm(x)
m=1
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A look at h(x) of order 1, knots at 1/3 and 2/3

Basis function 1 Basis function 2
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Mapping x (horizontal axis) to_f(x) (vertical axis)
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Linear constraints implying shapes

Restriction f(x) Interval
1) Bm—PBm_1 >0 increasing  (Km—1, Kkm)
2) Bm—Bm1=0 flat (Km—1, Km)
3) Bm—PBm-1<0 decreasing (km—_1, km)
5m+1 - 5m ,Bm - /Bm—1 .
4 = linear Km—1, K
D Ktk ks (km—1, K1)
Bm+1 - ,Bm 5m - Bm—1
5 > convex Km—1, K,
P - (1. K1)

km+1 — Km Km — km—1

and can combine, e.g., monotonic and convex; unimodal
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Linear constraints implying B-spline shapes
Linear restrictions on parameters, can be written as,

R —-c>0

Example 1: monotonicity (8m — Bm_1 > 0)
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Estimation of spline coefficients

@ Unconstrained shape, f(x) is linear function of 5

min Z — h(x;)B)?
@ Constrained OLS: quadratic programing problem

N
min ) "(yi — h(x;)3)? subjectto R3 — ¢ >0
i

@ Constrained, non-linear/ML: logarithmic barrier

> L(h(x)B) — uy_log(RB — c)
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