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Outline

1 Quadratic programming

2 Testing inequality constraints

3 Ordered means
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OLS

Scalar notation

arg min
β

∑
(yi − x>β)2

Matrix notation

arg min
β

(Y − Xβ)>(Y − Xβ)

Matrix notation expansion

arg min
β

β>X>Xβ − 2Y>Xβ + Y>Y

No constraints on β
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Reviewing (and rewriting) OLS
Matrix notation expansion

arg min
β

β>X>Xβ − 2Y>Xβ + Y>Y

multiply by 1/2, and drop YY (why allowed?)

arg min
β

1
2
β>X>Xβ − Y>Xβ

If we write in form of,

arg min
β

d>β +
1
2
βWβ

then
W = X>X . What is W−1?
d = −Y>X
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OLS - with restrictions

OLS solution places no restriction on β.
The optimization problem

arg min
β

1
2
β>X>Xβ − Y>Xβ

restricted inequality constraints on β, for example,

β ≥ 0

can be solved with “quadratic programing”
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Quadratic programming

Definition (Quadratic programming problem)
Let β ∈ Rn, W be symmetric n × n matrix,

arg min
β

d>β +
1
2
β>Wβ

subject to

R>1 β ≥ b1

R>2 β = b2

Notes
d , W , R, and b are fixed for a given optimization
β is unknown
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Distance between (0,0) and ∆̂
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Critical set H0 : ∆j = 0 vs H60 : ∆j 6= 0
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2,α=.05 = 6, so

√
∆2

1 + ∆2
2 =
√

6 = radius
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Distance between ∆̂, ∆̃ ≥ 0, and (0,0)
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Critical set of H0 vs H↗

−4 −2 0 2 4

−
4

−
2

0
2

4
S1

S4S3

S2

∆2

∆1●
∆~A

●
∆~B

●
∆~C

●∆~D

P(χ̄2
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2 > c̄) + 1/2P(χ2
1 > c̄) + 1/4 = α
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Constrained estimation: dimensions and distance
Constrained estimates ∆̃, subject to ∆ > 0

∆̃ =


(∆̂1, ∆̂2) if ∆̂1 ≥ 0 and ∆̂2 ≥ 0
(∆̂1,0) if ∆̂1 ≥ 0 and ∆̂2 < 0
(0, ∆̂2) if ∆̂1 < 0 and ∆̂2 ≥ 0
(0,0) if ∆̂1 < 0 and ∆̂2 < 0

How many free parameters? 2 (S1), 1 (S2, S4), or 0 (S3).
What is probability of being “far” from H0? By quadrant:

P(∆̃2
1 + ∆̃2

2 < c′ | ∆̂ ∈ S1) = P(χ2
2 < c′)

P(∆̃2
1 + 0 < c′ | ∆̂ ∈ S2) = P(χ2

1 < c′)

P(0 + ∆̃2
2 < c′ | ∆̂ ∈ S4) = P(χ2

1 < c′)

P(0 + 0 < c′ | ∆̂ ∈ S3) = 1
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Constrained estimation: dimensions and distance

In this simple example, each of quadrants is equally likely under H0

P(∆̃2
1 + ∆̃2

2 < c′ | ∆̂ ∈ S1) = P(χ2
2 < c′)

P(∆̃2
1 + 0 < c′ | ∆̂ ∈ S2) = P(χ2

1 < c′)

P(0 + ∆̃2
2 < c′ | ∆̂ ∈ S4) = P(χ2

1 < c′)

P(0 + 0 < c′ | ∆̂ ∈ S3) = 1

So for given α, solve for c′

P(χ̄2 < c′) = 1/4P(χ2
2 < c′) + 1/2P(χ2

1 < c′) + 1/4 = 1− α
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Distribution of hypothesis tests
Equality restriction versus unconstrained

I Fixed difference in dimensionality of models

Pr(−2[L(θ̃)− L(θ̂)] > c) = Pr(χ2
r > c)

But number of free − restricted parms is stochastic if
I Equality restrictions versus inequality restriction
I Inequality restricted vs unconstrained
I Inequality restricted versus additional inequalities

Pr(−2[L(θ̃)− L(θ̂)] > c′) = Pr(χ̄2 > c′)

=
K∑

k=1

wkPr(χ2
k > c′)

where wk is the probability of having a difference of k degrees of
freedom between models
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Overlap of sets: H0 vs H60 and H0 vs H↗
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2,α = radius60 = 2.45 vs
√
χ̄2
+,α = radius↗ = 2.05
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Best fitting mono inc.
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Diff in adjacent mean, unconstrained to constrained
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Best fitting mono inc.
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Diff in adjacent mean, unconstrained to constrained
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Lots of draws of unconstrained diff means
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Constrained v mono inc diff
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Constrained v mono inc diff

In simulation,
could you determine w , probability of model dimensionality
what is the distribution of the fits in constrained?
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Transformation via cholesky
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Transformation via cholesky

Y <- matrix(rnorm(3*n),ncol=3)
d <- t(apply(Y,1,diff))
z <- t(apply(Y,1,function(x) isoreg(x)$yf ))
d2<- t(apply(z,1,diff))

(V <- cov(d))
Vi<- solve(V)
A <- t(chol(Vi))
Ai<- solve(A)
d3 <- d %*% A
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... now iid bivariate normal
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Transformed optimization problem...

d <- t(apply(Y,1,diff))
d2<- t(apply(z,1,diff))
(V <- cov(d))
Vi<- solve(V)
A <- t(chol(Vi))
Ai<- solve(A)
d3 <- d %*% A

qp2 <- function(X)
solve.QP( Dmat = Ai%*%Vi%*%t(Ai),

dvec = X %*% A ,
Amat = t(R %*% t(Ai)) ,
bvec = c(0,0))

X <- d[i,]
d4 <- qp2(X)
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Constrained fit on transformed means
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Constrained v mono inc diff
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Transformed vs untransformed

In simulation,
R and V determine cone/constraint
note: perpendicular: closest fitting point
compare with untransformed
could you determine w , probability of model dimensionality (any
different from untransformed?)
what is the distribution of the fits in constrained?
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