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Hypothesis tests of r=Rank(R) restrictions

@ Equality restriction versus unconstrained
Hy: RO =0versus Hy: RO #0

@ Equality restrictions versus inequality restriction
Ho: RO =0 versus H,: R0 >0

@ Inequality restricted vs unconstrained
H,:R0 >0 versus Hg: R0 %0.

@ Inequality restricted versus additional inequalities

H) : Ra8 >0 versus Hy: Rgb >0, RsC Rg
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Hypothesis tests of r=Rank(R) restrictions

@ Fixed difference in dimensionality of models
» Equality restriction versus unconstrained

Pr(—2[L(A) — L(0)] > ¢) = Pr(x2 > c)

@ Difference in number of free parms is stochastic

» Equality restrictions versus inequality restriction
» Inequality restricted vs unconstrained
» Inequality restricted versus additional inequalities

Pr(—2[L(6) — L(0)] > ¢) = Pr(i® > ¢)
K

= wkPr(x% > ©)
o

where wy is the probability of having a difference of k degrees of
freedom between models
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Inference on a convex cone
Let

A= (A1, A2) ~ N(A, b)
where, possibly,
Aj=pi—piy je{1,2)

and Iy is a k x k identity matrix.
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Inference on a convex cone
Let

A = (A1,Az) ~ N(A, k)
where, possibly,

Aj=pi—pr je{1,2}
and Iy is a k x k identity matrix.

Hypotheses/comparisons
@ Hp:A=0 vs Hy:A#0
@ Hp:A=0 vs H-:A>0
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For example
© -

o -
TolE ~ -
< A 3
A
™ - ./ZI I
~ -
- -
o J ™ |
\ \ \ b \
0 1 2 1 2
i i

| will call this case “B”, with notation [ig = (figs, fi18, fizg) and
Ap = (A1, A2B).
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Critical set Hp : A = OAvs Hy : A; #0
2
q_ |

-4 -2 0 2 4

Critical value x3 ,_ g5 = 6, 50 /A% + A% = v/6 = radius
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Revisiting example B, imposing H » (monotonicity)

O —e

Red: unconstrained values changed to achieve monotonicity
Black dots are consistent with monotonic
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Distance between A % 0, and (0, 0)
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Critical set of Hy vs H 7

2
q.

S1

4 -2 0 2 4
P(2 o > ) = 1/4P(x3 > ©) +1/2P(3 > 8) +1/4=a

Jonathan Wand (Stanford University) Statistical Methods Ill: Spring 2013 means + ineqalities + splines

12/39



Constrained estimation: dimensions and distance

Constrained estimates A, subjectto A > 0

(Ay,A) ifAy>0and Ay >0
A_J(B1,0) ifA1>0and A, <0
(0,Ap) fAy<0OandAz; >0
(0,0) if Ay <0and A, < 0

How many free parameters? 2 (S1), 1 (S2, S4), or 0 (S3).
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Constrained estimation: dimensions and distance

Constrained estimates A, subjectto A >0

(Ay,Az) ifAy>0and Ay >0
A (Ay,0) ifA;y>0and A, <0
(0,Ap) ifA;<0andA, >0
(0,0) if Ay <0and Ay <0

How many free parameters? 2 (S1), 1 (S2, S4), or 0 (S3).
What is probability of being “far” from Hy? By quadrant:

P(A2 + A2 < |AeS)=P(x3<Cc)
P(AT+0<c |Ae S)=P(Hi<C)
PO+ A%< |AecS)=PK3<c)

PO+0<c|AecS3) =1
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Constrained estimation: dimensions and distance
In this simple example, each of quadrants is equally likely under Hy
P(A2 + A3 < |AeS))=P(x3<Cc)
P(A7+0<c |Ae S)=P(Hfi<C)
PO+ A%< |AecS)=PK3<C)
PO+0<c|AeS3) =1

So for given a, solve for ¢’

P(Y? < ¢)=1/4P(x5 < ) +1/2P(x5 <)+ 1/4=1-a
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Distribution of hypothesis tests

@ Equality restriction versus unconstrained
» Fixed difference in dimensionality of models

Pr(—2[L(A) — L(0)] > ¢) = Pr(x2 > c)

@ But number of free — restricted parms is stochastic if

» Equality restrictions versus inequality restriction
» Inequality restricted vs unconstrained
» Inequality restricted versus additional inequalities

Pr(—2[L(f) — L(B)] > ¢') = Pr(¥® > ¢)
K

=> wkPr(xt > ¢
k=1

where wy is the probability of having a difference of k degrees of
freedom between models
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Distribution of hypothesis tests
@ For equality-based hypo., choose test size «, solve for c,
Pr(x? > ¢) = «

@ For convex hypo., choose size o and solve for ¢/,

K

Z wkPr(xz > ¢) =«
k=1

@ Forany o, if wy <1thenc <c
Can use c as an upper bound (cf. Wand 2010)
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Overlap of sets: Hy VSAHg and Hp vs H

/X3, = radiusy =245 vs /x4, = radius » = 2.05

Jonathan Wand (Stanford University) Statistical Methods IlI: Spring 2013



Outline

e Basis function

Jonathan Wand (Stanford University) Statistical Methods IlI: Spring 2013



functions of x
Let’s think about aproximating E(y|x) = f(x) by

M
f(x) = Z Bmhm(x)

m=0
Quadratic regression
ho(x) =1, hi(x)=x; ho(x) = x>
f(x) = Bo + B1X + Box?
Broken stick
ho(x) =1; hi(x)=x;  ha(x) = (x - .5)+
f(x) = Bo + B1x + Bo(x — .5)+
Sequence of means
hm(x) = I(Lm < x < Up)
f(x) = Boho + B1h1(X) + ... + Bmhm(x)
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functions of x
A whip like model,

ho(x) =1

hi(x) =

ha(x) = (x— 5);
hs(x) = (x —.55)+

hm(x) = (x —.95)+
@ this is a particular case of linear spline basis function

@ piecewise linear
@ “knot” locations:

A= (5,.55,..,.95)

@ Q: what does adding knots do to property of curve?
@ Q: how do we pick knots?
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functions of x

Q: what is the derivative of a function of linear basis at a knot?
Q: How might we get smoothness?

ho(x) =1

hi(x) = x

hi(x) = x2

ho(x) = (x = M)3

@ quadratic spline
@ f has continuous first derivative at all points
@ more generally, a tructated power basis of dgree p
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Outline

9 B-splines
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Basis splines

Logic:
@ map x; — hym(x;)  (x; into M basis functions)
@ estimate f(x)  (curve, a weighted sum of hpy(x)):

M
f(x;) = Z Bmhm(xi) = Bh(x)
m=1
where 3 = {31 ,Bo, ... ,Bm} are simply regression coefficients.

Features of B-splines
@ shapes can be described by linear functions of
@ hm(x) has local support, 8, has local effect
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Basis splines, basic logic

@ Given a choice of knot locations {\1, ..., Ay} and polynomial order
k

@ Decompose x; into M + 2 basis functions, with mth
k+1 k
(Am+j — X)%
hmk1(X) = Amike1 — Ai) Z PR
= T1Z01i(Amsj — Am)
@ for a vector of spline coefficients,

B: [31;32,---73m]

@ f(x) is a weighted sum of hpy(x)

~ M ~
() = Bmhm(x)
m=1
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A look at h(x) of order 1, knots at 1/3 and 2/3

Basis function 1 Basis function 2

1
1
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2/3

ha(x)
2/3

1/3
1/3

T 1T 1 T 1T 1
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Mapping x (horizontal axis) to f(x) (vertical axis)

oA
@ |
N
= =
= =0
o _ 81
° I I \ O:\ I I \
0 1/3 2/3 1 0 1/3 2/3 1
X X
- @ ¢ = [0, .33, .66, 1]
A9 = [.33, .33, .33
Bo- b) 6 = [0..1, .4, 1]
[qV]
A0 = [1,.3, .6]
° i i ‘ © 6 = [0, .5, .4 1]
¢l p6 = [5 -1, 8
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Linear constraints implying shapes

Restriction f(x) Interval
1) Bm—Bm-q1 >0 increasing  (Km—1, Km)
2) Bm—Bm1=0 flat (Km—1, km)
3) Bm—PBm-1<0 decreasing (Km—1,km)
Bm+1 — ﬁm Bm - 5m—1 .
4 = linear Km—1, K,
D ket —km K Km (1. K1)
5m+1 - Bm ﬁm - ﬂm—1
5 > convex Km—1,k
) km+1 - km km - km—1 ( m m+1)
6) Bmi1 = Om _ Pm=Bm1 oncave (Km—1, Km-1)

km+1 - km km - km—1

and can combine, e.g., monotonic and convex; unimodal

Jonathan Wand (Stanford University) Statistical Methods Ill: Spring 2013 means + ineqalities + splines 27/39



Linear constraints implying B-spline shapes

Linear restrictions on parameters, can be written as,
Rs—c>0

Example 1: monotonicity (8m — Bm—1 > 0)

1 1 0 0 b
0 1 1 OI,B P2 c{

o O o
I

0 0 —1 1 gj
Example 2: symmetric
B
=l o T30 Jom) B el 0]
Ba
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Estimation of spline coefficients

@ Unconstrained shape, f(x) is linear function of 5

min Z — h(x,)3

@ Constrained OLS: quadratic programing problem

min Z — h(x;)3)?> subjectto RG—c >0

@ Constrained, non-linear/ML: logarithmic barrier

> L(h(x)B) — ) _log(RB - ¢)
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Motivations of PACs (Wand 2011)

Probability of Dem. victory by share of Dem. contributions

Probability of Democrat Winning (po )
Probability of Democrat Winning (pp )
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Open seats 1980—-1986, unrestricted B-spline
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PAC motives: model comparisons

Pr(¥? > ¢)
Parms  Log-lik. jvs jvs jvs

Model (j): m max L Linear Dips  Mono.
Linear Equality 0 —47.03

w/ symmetric dips 1 —46.59 0.18
Symmetric, monotonic 2 —44.44 0.06 0.03

w/ knots at (3, %) 3 4381 0.07 004 048
Unrestricted 6 —42.92 0.22 0.89 0.34

w/ knots at (15, %) 8 —42.46 0.99 0.89 0.34

Note: )_(2 = —2(Lrow — Leolumn)
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Concluding comments
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Beyond average differences
... and arbitrary flexibleness

@ Have a theory, ideally more than one
@ “Make your theories elaborate” (Fisher / Cochran 1965):
» when constructing a causal hypothesis one should envisage as
many different consequences of its truth as possible
» if a hypothesis predicts that y will increase steadily as the causal
variable z increases, a study with at least three levels of z gives a
more comprehensive check than one with two levels
» i.e, check shape! not just average change

@ And check against omnibus alternatives
but be clear this is for idea generation and robustness!
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GLM extensions

Simple extension, back-fitting
@ Bachetti (1989) Additive Isotonic Models

@ Geyer, Charles J. (1991) Constrained Maximum Likelihood in
Logistic
However, do you want to...

@ non-linear transformation of link often unappealing, distorts shape!

@ Wand (2011) uses (constrained) spline to fit binary choice
Multivariate shapes

@ rather than additive (cf Stout 2011)
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Testing theories based on shapes

Design: no less important here than in RCM
@ case selection

minimizing confounders
Eg., theories of campaign finance and “open seat” races
@ selection of a test / distance-metric
identifying unique and invariant implications from theory
E.g., agenda theories hinge on status quo locations of (potential)
proposals

@ sensitivity analysis: bounds from theory and data

E.g., what (implausible) distribution of SQ could make agenda
theories observationally equivalent
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