Statistical Methods lll: Spring 2013

Jonathan Wand

Stanford University

Choice + Inference

Jonathan Wand (Stanford University) Statistical Methods IlI: Spring 2013



Outline

0 Choice model with discrete endogenous variables: LATE

Jonathan Wand (Stanford University) Statistical Methods IlI: Spring 2013



Get-out-the-Vote Messages (GOTV)

Question: Is it possible to increase the likelihood of an individuals
turnout by making an appeal to vote?

Features of observational studies

@ Contact may be correlated with outcome

» Candidates may be more likely to target individuals who they think
will turnout

» Politically active individuals may be more likely to be in contact with
a candidate and also more likely to value voting

@ Difficult to measure the quality/quantity of contact and
mobilization.

» Often rely on self-reports/memory recall of citizens
» More effective contacts will be remembered
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Get-out-the-Vote Messages (GOTV)

Question: Is it possible to increase the likelihood of an individuals
turnout by making an appeal to vote?

Features of experiment

@ control who is assigned to “treatment” or not
@ control quality/quantity of “treatments”

Gerber and Green (1998) field experiment sample of households with
one or two individuals registered to vote:

@ random assignment to zero, one, or more types of treatments:
» in-person contact
» telephone call
» direct mail

@ random assignment to appeal
» civic duty
» close election
» neighborhood solidarity
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GOTV design

Design for in-person contact:

Group Number of people

Treatment 5,800

Control 23,500
Variable Description

D; € {0,1} itreated/contacted
Y; € {0,1}  Outcome : Voted or not
Yi(1), Y;(0) Potential outcome under contact or not

What we may want to learn, ATE E[Y;(1) — Y;(0)].
o If D L Y;(0), Yi(1) then E[Yi(1) — Y;(0)] = E[Yi(1)] — E[Yi(0)]
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Get-out-the-Vote (GOTV)
From Gerber and Green (GG, 1998), “in-person” RCT:

Group N Type

Treatment assigned and received 1,600 compliers
Treatment assigned not received 4,200 non-compliers
Control group 23,500 compliers

In-person Contact rate: 28 percent

With non-compliance, we have a problem similar to observational
study:
@ those who receive treatment may not be random

@ particular fear:
individuals who are are more likely to be contacted may also be
more likely to vote
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Angrist, Imbens, Rubins
AIR notation Description
Di(Z) € {0,1} Contact given assignment Z
Yi(Z,D) € {0,1} Voted given assignment and actuality
Potential Treatment Description
Di(Zi=1) Assigned to treatment
Di(Z; = 0) Assigned to control
Potential Outcome Description

Yi(Zi=1,D;=1) Assigned to treatment, and treated
Yi(Zi=1,D; =0) Assigned to treatment, and not treated
Yi(Zi=0,D; =1) Assigned to control, and treated
Yi(Zi=0,D; =0) Assigned to control, and not treated

Only going to see one outcome for an individual.
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Difference in observed outcomes - randomized
What does simple randomization give us?

Yi(0), Yi(1) L D;
therefore,
E[Yj(0) | D; = 0] = E[Yi(0) | D; = 1] = E[Y;(0)]
E[Yi(1) | D; = 0] = E[Yi(1) | D; = 1] = E[Y;(1)]
Thus, no selection bias,
0= E[Yi(0) | Di = 1] - E[Yi(0) | D; = 0]
and thus,
E[Y;| Dy =1] - E[Yi | D; = 0]
= E[Yj(1) = Yi(0) | D; = 1] + {E[Y(0) | D; = 1] — E[Yi(0) | D; = O]}
= E[Yi(1) = Yi(0) | D; = 1]
= E[Yi(1) - Yi(0)]
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Non-compliance as an identification problem
Without compliance (D; = Z;), potential confoundness,

Yi(0), Yi(1) L D;
if so, then
ETYi(0) | Dy = 0] # E[Y;(0) | D; = 1] # E[Yi(0)]
ETYi(1) | Dy = 0] # E[Y;(1) | D; = 1] # E[Yi(1)]
Thus, potential selection bias,
0 # E[Yi(0) | Di = 1] - E[Yi(0) | D; = Q]
and thus,
ETY;| Dy =1] - E[Y; | D; = Q]

# E[Yi(1) = Yi(0) | Dj = 1]+ {E[Yi(0) | D; = 1] — E[Yj(0) | D; = O]}
# E[Yi(1) = Yi(0) | Dy = 1]
# E[Y;(1) = Yi(0)]
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Non-compliance, overcoming identification problems
Approaches to identification with non-compliance

@ Bounds (cf, Manski)

© Parametric/structural (cf, Heckman)

© Redefine estimand of interest

@ Intention-to-treat (ITT) for outcome
With

Z L (Yi(0), Yi(1), Di(0), Di(1))
we can estimate
ITT = E[Yi(1, Di(1)) - Yi(0, Di(0))] = E[Y; | Z = 1] - E[Yi | Z = (]
@ Could also estimate ITT for receiving treatment

ITT: = E[Di(Z; = 1) - Di(Z = 0)] = E[D; | Zi = 1] - E[D; | Z = O]

© Local Average Treatment Effect (LATE)
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What do we need for LATE?

@ |A refer to assignment indicator Z as an “instrument”
@ interpretation hinges on properties holding..

@ instrument exists
@ monotonicity holds

@ Two contrast points from parametric model to think about

@ what parameter are we identifying?
@ what assumptions do we need?

Jonathan Wand (Stanford University) Statistical Methods Ill: Spring 2013 Choice + Inference 12/26



LATE

Condition 1 (Existence of Instruments)

(a) Joint independence

» adds another restriction to D, L Y;(0), Y;(1)
» testable?

(@) Exclusion, forall z,Z’, d’,
Yi(d) = Yi(z,d) = Yi(Z, d)

» interpretation?
» cf. AIR has good discussion

(b) Non-trivial effect of assignment

E[D; | Zi=1]# E[D; | Z; = 0]

» testable?
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LATE

Condition 2 (Monotonicity)
Di(1) = Di(0)

If we had this equation:
Di(z) = 1{v0 + ziv1 +¢; > 0}

what would we need to assume for monotonicity to hold?
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Defining (non)compliance
| Di(0) =0 D;(0) =1

Di(1) =0 | never-taker defier
Di(1) =1 | complier  always-taker

@ if all compliers, then
Di(z) = 4

@ for all except for defiers, we have,
Di(z2)<Z

@ for Defiers,
Di(Z2)>Z

@ Q: do we get observe which cell we are in? i.e., ty
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LATE

| Z; =0 Z; =1
D; =0 | complier/never-taker never-taker/defier
D; =1 | always-taker/defier —complier/always-taker

e If Z;=0and D; = 0, then could be either complier OR never-taker
@ If Z; =0 and D; = 1, then could be either never-taker OR defier

@ and so on...

@ LATE needs absense of defiers
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Conditional probabilities

| z=0 z =1
D; =0 Te + o o + g
D; =1 T + Ty Te + T

@ Eachcellis E(Di=w|Z=2z)
@ If no defiers, then proportion of each type is identifiable from this
table of conditional probabilities
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Conditional probabilities

| Zz-0 z 1
D; =0 Te + o o +0
D; =1 m +0 e + T4

@ Eachcellis E(Di=w|Z=2z)
@ If no defiers, then proportion of each type is identifiable from this
table of conditional probabilities,

Population parameters,

m = E(D; | Z; = 0) = P(always)

mo=1—E(D; | Z =1) = P(never)

me=E(D; | Zi=1)— E(D; | Z = 0) = P(complier)
g = 0 = P(defier)

Jonathan Wand (Stanford University) Statistical Methods Ill: Spring 2013 Choice + Inference 18/26



Refresher: Law of Total Probability

Can partition any single event into multiple disjoint events
E=(EnF)U(EnNF°).

l.e., E can occur in two mutually exclusive ways:
P(E)=P((ENnF)uU(EnF°)

= P( ENF)+ P(ENF®) (why?)
= P(E | F)P(F) + P(E | F®)P(F®) (why?)

Definition (Law of Total Probability)
Given events E, F € Q,

P(E) = P(E | F)P(F) + P(E | F®)P(F°).
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Refresher: lterated Expectations

Theorem (Law of iterated expectations)

If X and Y are any two random variables then
ExX =Ey [ Exjy(X|Y)]

Proof:

ExX = ZZX f(x,y)
Xy
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Imbens-Angrist Decompositions

Conditional expectation by types of respondents:

ElYi|Z=1] = E[Y;|Z =1,complier] x P(complier) +
E[Y;| Z = 1,never] x P(never)  +
ElY;| Z =1,always|] x P(always) +
E[Y; | Z = 1,defier | x  P(defier)

= E[Y;(1) | complier] x P(complier) +
ETY;(0) | never ] x  P(never) +
E[Y;(1) | always | x P(always) +
E[Y;(0) | defier ] x  P(defier)

= E[Yi(1) | complier] X T +
E[Yi(0) | never ] X +
E[Yi(1) | always | X
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Imbens-Angrist Decompositions

Conditional expectation by types of respondents:

E[Yi|Z=0] = E[Y;|Z =0,complier] x P(complier) +
E[Y;| Z = 0,never | x  P(never) +
E[Y;| Zi=0,always] x P(always) +
E[Y; | Z = 0,defier | x  P(defier)

= E[Y;(0) | complier] x P(complier) +
ETY;(0) | never ] x  P(never) +
E[Y;(1) | always | x P(always) +
E[Y;(1) | defier | x  P(defier)

= E[Yi(0) | complier] X Te +
E[Yi(0) | never ] X +
E[Yi(1) | always | X
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LATE

So, given these representations of population values,
ELYi | Zi=1]

= E[Yi(1) | complier]rc + E[Y;(0) | never |mo + E[Y;(1) | always |4
ElYi | Z =0]

= E[Y;(0) | complier]m¢ + E[Y;(0) | never |mo + E[Y;(1) | always |

We can solve for the difference

E[Y; | Zi=1] - E[Y;| Z =0]
= E[Yi(1) | complier]r; — E[Y;(0) | complier]|r¢
= E[Y;(1) — Yi(0) | complier]rc
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LATE

Given difference
E[Yi| Z =1] - E[Y;| Z = 0]
= E[Y;i(1) | complier]r; — E[Y;(0) | complier]r¢
= E[Yi(1) — Y;(0) | complier]r¢
We can solve for,

E[Yi|Zi=1] - E[Yi| Z =]
™

c

E[Yi(1) — Yi(0) | complier]

Can we estimate 7.?

Yes, itis ITT for receiving treatment.

E[Y/(1) - Y/(0) | complier] —
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LATE applied to GOTV

Vote Percent for Treatment: 47.2%; for Control: 44.8%
Percent Contacted of Assigned Treatment: 27.9%

Local Average Treatment Effect

E|Yi(1,Di(1)) — Y;(0, D;(0)
E[Yi(1) -~ Yi(0) | (1) - D(0) = 1] = [ (E[D-(1))—D-Eo)] :

_ __ITT Vote _
~ ITT Contact

_ 472 — 448 _
= 579 =.087
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LATE

Questions to think about,

@ instruments easy with randomized assignment; do you believe
them in obs research?

@ without control of experiment, is monotonicity plausible?
@ how do assumptions differ from parametric model?

@ what is weird about LATE?

@ how does value depend on instrument?

Jonathan Wand (Stanford University) Statistical Methods Ill: Spring 2013 Choice + Inference

26/26



	Choice model with discrete endogenous variables: LATE

