Statistical Methods III: Spring 2013

Jonathan Wand

Stanford University

Choice models with endogeneity

Bivariate normal: derivation

• Take
$$X, Z \sim N(0, 1)$$
, independent
• Set $Y = \rho X + \sqrt{1 - \rho^2} Z$
• Note: $E(X) = E(Y) = 0$,
 $Var(X) = Var(Y) = 1$, $Corr(X, Y) = \rho$
 $\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \rho & \sqrt{1 - \rho^2} \end{bmatrix} \cdot \begin{bmatrix} X \\ Z \end{bmatrix}$, $\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$

• \Rightarrow (X, Y) has the "standard bivariate normal" distribution

Conditional expectations

Things you need to know to derive mills ratio,

$$E(z \mid z > c) = \int_{c}^{\infty} \frac{z\phi(z)}{[1 - \Phi(c)]} dz$$

$$E(z \mid z > c) = \frac{1}{(1 - \Phi(c))} \int_{c}^{\infty} \frac{z}{\sqrt{2\pi}} \cdot \exp(\frac{-z^2}{2}) dz$$

$$E(z \mid z > c) = \frac{1}{(1 - \Phi(c))} \int_{-\infty}^{\infty} -\left(\frac{d\phi(z)}{dz}\right) dz$$

$$\frac{d\phi(z)}{dz} = \frac{1}{\sqrt{2\pi}} \exp(-\frac{z^2}{2}) \cdot -z$$
$$\int_{c}^{\infty} -(\frac{d\phi(z)}{dz})dz = \int_{c}^{\infty} -\frac{1}{\sqrt{2\pi}} \exp(-\frac{z^2}{2}) = 0 + \frac{1}{\sqrt{2\pi}} \exp(-\frac{c^2}{2}) = \phi(c)$$

$$C_i = 1$$
 if $a + bX_i + U_i > 0$, else $C_i = 0$. (1)

In application, $C_i = 1$ means that subject *i* self-selects into treatment. The second equation defines the subject's response to treatment:

$$Y_i = 1$$
 if $c + dZ_i + eC_i + V_i > 0$, else $Y_i = 0$. (2)

Step 1. Estimate the probit model (1) by likelihood techniques. Step 2. To estimate (2), fit the expanded probit model

$$P(Y_i = 1 | X_i, Z_i, C_i) = \Phi(c + dZ_i + eC_i + fM_i)$$
(3)

to the data, where

$$M_{i} = C_{i} \frac{\phi(a+bX_{i})}{\Phi(a+bX_{i})} - (1-C_{i}) \frac{\phi(a+bX_{i})}{1-\Phi(a+bX_{i})}.$$
(4)

Consider (1–2). We can represent V_i as $\rho U_i + \sqrt{1 - \rho^2 W_i}$, where W_i is an N(0, 1) random variable, independent of U_i . Then

$$E\left\{V_i\middle|X_i = x, C_i = 1\right\} = E\left\{\rho U_i + \sqrt{1-\rho^2}W_i\middle|U_i > -a - bx_i\right\}$$
$$= \rho E\{U_i|U_i > -a - bx_i\}$$
$$= \rho \frac{1}{\Phi(a + bx_i)} \int_{-a - bx_i}^{\infty} x\phi(x)dx$$
$$= \rho \frac{\phi(a + bx_i)}{\Phi(a + bx_i)}$$
(9)

because $P{U_i > -a - bx_i} = P{U_i < a + bx_i} = \Phi(a + bx_i)$. Likewise,

$$E\left\{V_{i}\middle|X_{i}=x, C_{i}=0\right\} = -\rho \frac{\phi(a+bx_{i})}{1-\Phi(a+bx_{i})}.$$
(10)

Step 1. Estimate the probit model (1) by likelihood techniques. Step 2. To estimate (2), fit the expanded probit model

$$P(Y_i = 1 | X_i, Z_i, C_i) = \Phi(c + dZ_i + eC_i + fM_i)$$
(3)

to the data, where

$$M_{i} = C_{i} \frac{\phi(a+bX_{i})}{\Phi(a+bX_{i})} - (1-C_{i}) \frac{\phi(a+bX_{i})}{1-\Phi(a+bX_{i})}.$$
(4)

	Table 1 Simulation results				
	С	d	е	ρ	
True values					
	-1.0000	0.7500	0.5000	0.6000	
Raw estimates					
Mean	-1.5901	0.7234	1.3285		
SD	0.1184	0.0587	0.1276		
Two-step					
Mean	-1.1118	0.8265	0.5432		
SD	0.1581	0.0622	0.2081		
MLE					
Mean	-0.9964	0.7542	0.4964	0.6025	
SD	0.161	0.0546	0.1899	0.0900	

Notes. Correcting endogeneity bias when the response is binary probit. There are 500 repetitions. The sample size is 1000. The correlation between latents is $\rho = 0.60$. The parameters in the selection equation (1) are set at a = 0.50 and b = 1. The parameters in the response equation (2) are set at c = -1, d = 0.75, and e = 0.50. The response equation includes the endogenous dummy C_i defined by (1). The correlation between the exogenous regressors is 0.40. MLE computed by VGAM 0.7-6.

Fig.1 The two-step correction. Graph of bias in \hat{e} against ρ , the correlation between the latents. The light lower line sets the correlation between regressors to 0.40, and the heavy upper line sets the correlation to 0.60. Other parameters as for Table 1. Below 0.35, the lines crisscross.

Endogenous selection

$$P(Y_i = 1 | X_i, Z_i) = \Phi(c + dZ_i + fM_i)$$
(7)

to the data on subjects *i* with $C_i = 1$. This time,

$$M_i = \frac{\phi(a+bX_i)}{\Phi(a+bX_i)}.$$
(8)

Endogenous selection

	С	d	ρ	
True values				
	-1.0000	0.7500	0.6000	
Raw estimates				
Mean	-0.7936	0.7299		
SD	0.0620	0.0681		
Two-step				
Mean	-1.0751	0.8160		
SD	0.1151	0.0766		
MLE				
Mean	-0.9997	0.7518	0.5946	
SD	0.0757	0.0658	0.1590	

Table 2 Simulation results

Notes. Correcting endogeneity bias in sample selection when the response is binary probit. There are 500 repetitions. The sample size is 1000. The correlation between latents is $\rho = 0.60$. The parameters in the selection equation (5) are set at a = 0.50 and b = 1. The parameters in the response equation (6) are set at c = -1, and d = 0.75. Response data are observed only when $C_i = 1$, as determined by the selection equation. This will occur for about 64% of the subjects. The correlation between the exogenous regressors is 0.40. MLE computed using *Stata* 9.2.