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0 Preliminary results

e Choice model with discrete endogenous variables
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Bivariate normal; derivation

® Take X,Z ~ N(0,1), independent

® Set Y =pX + J1—p2Z
® Note: E(X) = E(Y) =0,
Var(X)=Var(Y) =1, Corr(X,Y) =p

x| [1 o X e |1
Y p 1—p? z |’ p 1

® = (X,Y) has the “standard bivariate normal” distribution
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Conditional expectations

Things you need to know to derive mills ratio,

E(z|z>c)= Iﬂd
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Endogenous assignment

C,-=1ifa+in+Ui>0,elseCi=0. (1)

In application, C; = 1 means that subject i self-selects into treatment. The second equation
defines the subject’s response to treatment:

Y,«=1ifc+le»+eC,-+V,->0,elseYi=0. (2)
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Endogenous assignment

Step 1. Estimate the probit model (1) by likelihood techniques.

Step 2. To estimate (2), fit the expanded probit model

P(Y, = 1|Xl'7Z,', C,) = (I)(C + le + EC,' +fMi)
to the data, where

d)(a + bX,)

1 (])(a + bX,)
'(D(a + bX,) (1 ¢ )

Ml': i .
¢ 1—®(a + bX;)
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Endogenous assignment

Consider (1-2). We can represent V; as pU; + \/ 1—p2W,, where W; is an N(0, 1) random
variable, independent of U,. Then
E{V,-‘X,- =x,Ci= 1} = E{pU,— +/T=pW,
= pE{U,|Ul > —a—bx,-}
1 @

U;> —a—bx,-}

P (I)(a + bxi) —a—bx; xq)(X)dx (9)

d(a + bx;)
-P ®(a + bx;)

because P{U; > — a — bx;} = P{U; < a + bx;} = ®(a + bx;). Likewise,

dla+ bx;)
1—®(a + bx;)’

E{V,“X[ =X7C,‘ =0} =—-p
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Endogenous assignment
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Endogenous assignment

Table 1 Simulation results

c d e p
True values
—1.0000 0.7500 0.5000 0.6000

Raw estimates

Mean —1.5901 0.7234 1.3285

SD 0.1184 0.0587 0.1276
Two-step

Mean —1.1118 0.8265 0.5432

SD 0.1581 0.0622 0.2081
MLE

Mean —0.9964 0.7542 0.4964 0.6025

SD 0.161 0.0546 0.1899 0.0900

Notes. Correcting endogeneity bias when the response is binary probit. There are 500 repetitions. The sample size
is 1000. The correlation between latents is p = 0.60. The parameters in the selection equation (1) are set at a =
0.50 and b = 1. The parameters in the response equation (2) are setat ¢ = —1,d = 0.75, and e = 0.50. The response
equation includes the endogenous dummy C; defined by (1). The correlation between the exogenous regressors is
0.40. MLE computed by VGAM 0.7-6.
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Endogenous assignment
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Fig.1 The two-step correction. Graph of bias in € against p, the correlation between the latents. The
light lower line sets the correlation between regressors to 0.40, and the heavy upper line sets the
correlation to 0.60. Other parameters as for Table 1. Below 0.35, the lines crisscross.
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Endogenous selection

P(Yi = I‘X,',Z,‘) = (I)(C + dZi +fM,')
to the data on subjects i with C; = 1. This time,

_ d)(a + bX,)
" O(a+ bX;)
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Endogenous selection

Table 2 Simulation results

c d p
True values
—1.0000 0.7500 0.6000

Raw estimates

Mean —0.7936 0.7299

SD 0.0620 0.0681
Two-step

Mean —1.0751 0.8160

SD 0.1151 0.0766
MLE

Mean —0.9997 0.7518 0.5946

SD 0.0757 0.0658 0.1590

Notes. Correcting endogeneity bias in sample selection when the response is binary probit. There are 500
repetitions. The sample size is 1000. The correlation between latents is p = 0.60. The parameters in the selection
equation (5) are set at @ = 0.50 and b = 1. The parameters in the response equation (6) are setatc = —1,and d =
0.75. Response data are observed only when C; = 1, as determined by the selection equation. This will occur for
about 64% of the subjects. The correlation between the exogenous regressors is 0.40. MLE computed using

Stata 9.2.
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