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Outline

0 Axioms of choice and IIA
@ Endogeneity/Confoundedness
e Endogeneity in choice model

@ Effects and counterfactuals
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Spatial model

Consider three parties in unidimensional model

@ where should parties locate?
depends on whether there is threat of entry or not? stackleberg
equilibrium
most stat models treat location as given

@ what party should a party vote for?

@ how should voter make choice?
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Axiomatic Foundations of Choice Models

Assumptions
D1 LetRc ScTcU.
D2 Let x,y,z € T, arbitrary elements of choice set.

D3 Let P(x, y) be the probability of choosing x instead of y,
0< P(x,y) <1.

D4 Pg(R) is the probability of choosing R given choice from among
alternatives in S.

Choice Axiom
(i) Pr(R) = Ps(R)Pr(S)
(i) If P(x,y) =0forsome x,y € T, Pr(S) = Pr_,3(S — {x})
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Axiomatic Foundations of Choice Models

Axiom of Choice
@ Defines relationship which defines how choices within subsets are
related in the context of an individual making probabilistic choices.
@ Can be rewritten as Pr(R | S)Pr(S) = Pr(R)
@ Two core implications,

Lemma 3: Independence of Irrelevant Alternatives (I1A)
Theorem 3: Probability must satisfy a ratio scale
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Axiomatic Foundations of Choice Models

Lemma 3 (Independence from irrelevant alternatives):

For x,y € S,
P(x,y) _ Ps(x)

P(y.x) ~ Ps(y)
Proof:
By Axiom we have
Ps(x) = P(x,y)[Ps(x) + Ps(y)]

So

Ps(x) = P(x,y
Ps(x) = P(x,y
(1 - P(x,¥))Ps(x) = P(x,y
P(y,x)Ps(x) = P(x,y)Ps(y
P(x,y) Ps(x)
P(y, x) Ps(y)
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
What does this mean?

@ relative probability of choosing two alternatives is invariant to the
composition of the larger set of alternatives.

@ Only ratio is invariant, not probabilities themselves

@ Might also hear that log-odds of two choices are constant:
log(Ps(x)) —log(Ps(y)) = ¢
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
Why so cool?

@ can estimate parameters defining utility of choices even with only
a subset.

@ ** Not generally possible if IIA does not hold (e.g., correlation
between utilities of choices)—then to estimate any choice must
model all choices.

@ ** Neither holds in general for models of choice (by design) nor is
it plausible that it in general holds empirically.
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Axiomatic Foundations of Choice Models

Theorem 3: choice probability is ratio scale
Jv: T — R4, unique up to multiplication by k > 0, such that

ovx) 1
B Zyes V(y) B 1 + ZyeS—{x} V(y)/V(X)

McFadden and Yellot have each pointed out the connection to logit
models by setting v(x) = e*.

Ps(x)

E.g.,

v(x) e 1 B 1
(X)+v(y) ewx+ewr 14+ewv/ex {4 e ()

P(X’y): v

Yellot shows that discriminal process based on Type | discrete value
distribution is uniquely equivalent to Choice Axiom.

Jonathan Wand (Stanford University) Statistical Methods Ill: Spring 2013 Choice models: generalize IIl 10/44



Axiomatic Foundations of Choice Models

Let S € {1,2,3}, and Pg(j) be probability of choosing j from S,

1 e:u'1

PS(y - 1) - 1+ eH2—H1 4 @H3— - ert + eh2 | eHs
1 etz

Psly=2) = 1 f e—He + ela—tz el + eliz + el
1 eMs

Ps(y =3) = =

1+ e1—H3 | gla—H3 e + etz | eH3

Ps(y =1) et
Ps(y =2) ek
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Axiomatic Foundations of Choice Models

Let T € {1,2}, and Pr(j) be probability of choosing j from T,
Recal logit (special case of MNL),

1 et
PT(y - 1) - 1+ ete—H1 - et + et
1 eH2
Prly=2) = 1 L etz ekz + ez
So,
Priy=1) _ e~
Priy=2)  er
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Axiomatic Foundations of Choice Models

Comparing probabilities of choosing 1 and 2 in logit and MNL,
Pr(1) _ e _ Ps(1)

Pr(2) — e Ps(2)

MNL conforms to Choice Axiom/IIA.

See Yellot (1977) and McFadden (1973) for connections between Luce
and EV Type 1.
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Classical experiment

Let (Y, X, D) be observable random variables,
@ Y, is the outcome of interest
Q X; a “pre-determined” variable
@ D, indicator for treatment status
Researcher chooses an assignment mechanism. E.g.,
@ randomly draw a unit from a population
@ assign treatment D; = 1 to unit with probability p
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Some notation — potential outcomes

For dichomtous treatments,
@ Z; € {0,1}: assigment indicator
@ D; € {0, 1}: received treatment indicator

allowing possibility that Z; # D,
Define potential outcomes, Y;(D;):

@ Y;(1): outcome if treated
@ Y;(0): outcome if not treated
later we will also consider Y;(Z;, D;)
@ Y(0,0): neither assigned nor treated
@ Y(0,1): not assigned, yet treated
@ Y(1,0): assigned yet not treated
@ Y(1,1): assigned and treated
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Fundamental Problem of Causal Inference
Causal Effect (CE),
i = Yi(1) — Yi(0)

Key ideas:
@ cannot observe both Y;(1) and Y;(0).

@ causal effect may be heterogeneous (no structure in definition)
hence 7; is indexed by i

What do we observe?

Yi = DiYi(Di=1)+[1-D]Yi(D;=0)
= Yi(Di=0)+ Di[Yi(D; =1) = Yi(D; = 0)]
= Yi(D;=0)+ D7

which is control outome, plus CE if treated
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Examples of Estimands

We can’t observe 7, could we estimate the following?
Population average treatment effect, PATE

p = E[Yj(1) = Y;(0)]
Population average treatment effect for treated, PATT

o7 = E[Yi(1) = Y;(0) | D; = 1]

Notes:

@ Hm, still involve both Y;(1) and Y;(0) for each i...
@ often will refer to PATE simply as ATE.
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Difference in observed outcomes

Consider
EOORUIRES PR
i:Dj=1 i:D;=0

with some regularity conditions, as sample of each treatment gets big...

pllm— > Yi(1) = E[Yi(1) | D =1]
/D 1

pllm — > Yi(0) - E[Yi(0) | D; = 0]
/D =0
Question: how does the limiting conditional difference,
E[Yi(1) | Dj =1] - E[Yj(0) | D; = Q] (1)
relate to PATE
p = E[Y;(1)] — E[Y;(0)]

Does (1) identify a quantify of interest?
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A point worth emphasizing

Coherent to refer to Y;(0) for someone assigned to D; = 1?
or to refer to Y;(1) for someone assigned to D; = 0?

Unobserved Perfect Doctor
Unit Truth Unit CE Assigned  Observed
i Yi(0) Yi(1) Yi(1)-Yi(0) D; Yi(0) Yi(1)
1 13 14 1 1 ? 14
2 6 0 -6 0 6 ?
3 4 1 -3 0 4 ?
6 6 1 -5 0 6 ?
7 8 10 2 1 ? 10
8 8 9 1 1 ? 9

Conditional expectation E[Y;(j)|D = j] depends on assignement
mechanism.
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Comparing treated and control

E[Y;| Di=1]— E[Y;| D;=0]

= E[Yi(1) | i = 1] - E[Yi(0) | Di = 0]

= E[Yi(1) | Di = 1] = E[Yi(0) | D; = 0] + E[Yi(0) | D; = 1] — E[Yi(0) | D; = 1]
={E[Yi(1) | Di = 1] = E[Yi(0) | i = 1]} + {E[Yi(0) | Di = 1] — E[Yi(0) | D; = O}
= E[Yi(1) = Yi(0) | Dy = 1]+ {E[Yi(0) | D; = 1] — E[Y;(0) | D; = O]}

Describe each of these in words

@ E[Y;(1)| D; =1] — E[Yi(0) | D; = 0]: avg difference in outcomes
@ E[Y;(1) — Yi(0) | D; = 1]: average treatment effect on treated
@ E[Y;(0) | D; =1] — E[Y;i(0) | D; = 0] # 0: if selection bias

Question: what could you do, knowing this decomposition?
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Difference in observed outcomes - randomized
What does simple randomization give us?

Yi(0), Yi(1) L DO;
therefore,

E[Yi(0) | Di = 0] = E[Yi(0) | D; = 1] = E[Y;(0)]
E[Yi(1) | Di = 0] = E[Y;(1) | D; = 1] = E[Y;(1)]

Thus, no selection bias,
0 = E[Y;(0) | D; =1] — E[Y;(0) | D; = 0]

and thus,

ELY;| D= 1]~ E[Y;| D; = 0]
— E[Yi(1) = Yi(0) | D; = 1]+ {E[¥(0) | D; = 1] — E[¥,(0) | D, = O]}

= E[Y/(1) - Yi(0) | D; = 1] = PATT
— E[Y|(1) - Y/(0)] = PATE
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Let’s generalize to accomodate differences conditional on
pre-treatment variables...

@ allow for different assignement probabiliteis as a function of
observables

@ what do we need to assume to identify ATE in this more general
case?
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Key concepts: Unconfoundedness

An assignment is unconfounded if the assignment mechanism is
independent of the potential outcomes.

Yi(0), Yi(1) L Di | X;
(can also be unconditional)

Many labels for essentially the same idea:

@ “ignorable treatment assignment”
Rosenbaum and Rubin (1983)

@ “conditional independence assumption”
Lechner (1999, 2002)

@ “selection on observables”
Barnow, Cain, and Goldberger (1980)
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Key concepts: Unconfoundedness

In experiments,

@ may stratify on an observable variable (or more than one)

@ stratification useful to ensure both treatments within a rare group
In observational studies,

@ applications approximating an experiment seek to justify
unconfoundeness is acheived prior to making comparisons

@ assumes that all variables necessary for understanding
assignment mechanism are observable
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Key concepts: Unconfoundedness — violations

Perfect Pollster

D 1 if Y;(1) > Y;j(0)
"o if vi(1) < Yi(0)

Pretty good pollster, p > .5

b0 -1 [P if Yi(1) > Y;(0)
T M1 —p it Y(1) < Y(0)
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Key concepts: Probabilistic assignment

Probabilistic assignment, for all X,

0<Pr(Di=1]X)<1

Also known as
@ “overlap”

@ common support on X
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Key concepts: Probabilistic assignment — violation

If Pr(D;=11]X) =1
then there exists no observation of E[Y | X D =DQ].

(and mirror problem for Pr(D; =1 | X) =

For example,
Xi E[Yi(0) [ x] E[Yi(1) [xi] P(Di=1]x)
0 0 1 0.4
1 2 5 1

Question:
@ can we still make inference for subset where X = 0?
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An alternative estimand - conditional

Conditional average treatment effect, CATE
Z ElYi(1 (0) | Xi
Conditional average treatment effect for treated, CATT

TCT—f > E[Yi(1) - Yi(0) | X]
/D 1
Notes:
@ ATE conditional on sample distribution of X
@ intrinsically of interest if representativeness of sample is dubious
@ and can condition on subset of X (it is pre-treatment)
@ in matching methods, will often trim to area of common support.
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Unconfoundness + Overlap = (C)ATE identifiable
By unconfoundedness,

ElY| D=d,X=x]=E[Y(d)| D=d, X = X]

= E[Y(d) | X = X]

By overlap, we observe for each subpoluation x,

ElY | D=1, X=x]—E[Y|D=0,X = x]

=E[Y(1)|D=1,X=x]—E[Y(0) | D=0,X = x]

=E[Y(1) | X =x]—E[Y(0) | X = x]

1)

= E[Y(1) - Y(0) | X = x]
— 7(x)

Can weight over distribution of X in sample to get CATE, or population
distribution of X to get ATE, E[rj]
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Endogenous assignement

C,-=1ifa+in+Ui>0,elseCi=0. (1)

In application, C; = 1 means that subject i self-selects into treatment. The second equation
defines the subject’s response to treatment:

Y,«=1ifc+le»+eC,-+V,->0,elseYi=0. (2)
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Endogenous assignement

Step 1. Estimate the probit model (1) by likelihood techniques.

Step 2. To estimate (2), fit the expanded probit model

P(Y, = 1|Xl'7Z,', C,) = (I)(C + le + EC,' +fMi)
to the data, where

d)(a + bX,)

1 (])(a + bX,)
'(D(a + bX,) (1 ¢ )

Ml': i .
¢ 1—®(a + bX;)
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Review: Bivariate normal

® Take X,Z ~ N(0,1), independent

® Set Y =pX + J1—p2Z
® Note: E(X) = E(Y) =0,
Var(X)=Var(Y) =1, Corr(X,Y) =p

x| [1 o X e |1
Y p 1—p? z |’ p 1

® = (X,Y) has the “standard bivariate normal” distribution
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Endogenous assignement

Consider (1-2). We can represent V; as pU; + \/ 1—p2W,, where W; is an N(0, 1) random
variable, independent of U,. Then
E{V,-‘X,- =x,Ci= 1} = E{pU,— +/T=pW,
= pE{U,|Ul > —a—bx,-}
1 @

U;> —a—bx,-}

P (I)(a + bxi) —a—bx; xq)(X)dx (9)

d(a + bx;)
P ®(a + bx;)

because P{U; > — a — bx;} = P{U; < a + bx;} = ®(a + bx;). Likewise,

dla+ bx;)

1—®(a + bx;)’ (10)

E{V,“X[ =X7C,‘ =0} =—-p
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Endogenous assignement

Step 1. Estimate the probit model (1) by likelihood techniques.

Step 2. To estimate (2), fit the expanded probit model

P(Y, = 1|Xl'7Z,', C,) = (I)(C + le + EC,' +fMi)
to the data, where

d)(a + bX,)

1 (])(a + bX,)
'(D(a + bX,) (1 ¢ )

Ml': i .
¢ 1—®(a + bX;)
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Endogenous assignement

Table 1 Simulation results

c d e p
True values
—1.0000 0.7500 0.5000 0.6000

Raw estimates

Mean —1.5901 0.7234 1.3285

SD 0.1184 0.0587 0.1276
Two-step

Mean —1.1118 0.8265 0.5432

SD 0.1581 0.0622 0.2081
MLE

Mean —0.9964 0.7542 0.4964 0.6025

SD 0.161 0.0546 0.1899 0.0900

Notes. Correcting endogeneity bias when the response is binary probit. There are 500 repetitions. The sample size
is 1000. The correlation between latents is p = 0.60. The parameters in the selection equation (1) are set at a =
0.50 and b = 1. The parameters in the response equation (2) are setat ¢ = —1,d = 0.75, and e = 0.50. The response
equation includes the endogenous dummy C; defined by (1). The correlation between the exogenous regressors is
0.40. MLE computed by VGAM 0.7-6.
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Endogenous assignement

0.25
0.20
0.15 4
0.10 +

0.05

BIAS IN ESTIMATED CAUSAL EFFECT

0.00 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

CORRELATION BETWEEN LATENTS

Fig.1 The two-step correction. Graph of bias in € against p, the correlation between the latents. The
light lower line sets the correlation between regressors to 0.40, and the heavy upper line sets the
correlation to 0.60. Other parameters as for Table 1. Below 0.35, the lines crisscross.
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Londgrean et al 1995

Londregan, Bienen; and van de Walle. 1995. Ethnicity and Leadership

Succession in Africa. ISQ.

Question: What is the effect of leader’s own ethnic population share on

non-constitutional replacement of leader?

Shows larger share increase probability of non-constitutional
replacement (but often replaced from within own ethnic group).

Key measure is (E)thnic (S)ize (D)ominance.

Thus we create a measure which adjusts the ethnic share of the leader’s group
for the degree of diffusion among the country’s ethnic groups. We call this measure
“ESDy" (ethnic size dominance). This measure accounts for both size and disper-
sion of ethnic groups, and is derived from what is called a Herfindahl index. (See
Herfindahl, 1950; Stigler, 1968; Hart, 1971.) Our ESD| measure for leader L is
defined as follows:

Sy,
VSf+S5+...+5%

ESD, =
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Case study: Londregan et al

TasLr 2, Descriptive Statistics

Variable Mean  Std. Dev. Min,  Median  Maximum % Within

Annual growth rate 0.01 007 040 0.01 044 92.27
In{income) 6,76 0.56 5.40 6.70 E.40 10.28
Openness to rade 0.34 0.22 004 0.28 142 28.33
Leader's ethnie share 0.56 0.27 001 0.29 099 10.21
ESDy 0.59 0.30 002 0.63 naa 2742
ESDs .29 0.29 000 0.18 089 - B43
Paolitical exit .08 0.27 000 0.00 1.00 91.94
Nonconstinutional exit 0.07 0.25 000 0.00 1.00 91.63
Nonconstinational entrant 0.40 049 000 0.00 1.00 4082
Inter-ethnic leadership

transition 0.05 0.21 000 000 1.00 93.40

Wand (Stanford University) Statistical Methods IlI: Spring 2013



Case study: Londregan et al

TarLe 3, Sample Correlations

Log of Ethnic  Leader's
Lagged  Openness  Herf. Ethnic Political
Iname b0 Trade  Index Sthiare ESD; EsD; Exit

Income growth rate  —0.06  —0.01  —0.06 0.10 0.06 011 014
—L64)"  (-0.19) (-1.58)  (289) (167}  (319) (-387)

Log of lagged income 0.37 =0.20 0.26 0.22 0.27 0.00°
(15.59)  (-5.21) (8.52) (7.100 (8.99) (-0.12)

Openness to trade -0.02 0.11 0.06 0.14 -0.08
{—0.44) (3.34) (1.82) (4.31)  (-2.27)

Ethnic Herfindahl index -0.72 =043 -0.70 0.02
(-15.76) (-10.44) (-15.47) (0.45)

Leader's ethnic share 089 0.99 —0.05
(7870) (37252} (137

ESDy 088 =0.0%
(71.43)  (=0.71)

ESDs —0.05
(~1.3%)

AT—ratios in parentheses,
e estimated correlation | the log of lagged real per capita income and our political exit variable is
~0.004, which i3 0.00 1o wwo decimal places.
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Case study: Londregan et al

Tasre 5. Ethnicity and Nonconstitutional Suecession

Dependent Variable: N itectional Exit
Varinble (1) 2 3) (4
Frevious year’s log of per capita income 247 -2.58 -3.21 -3.75
(L.15)® (4.46) (1.28) (1.49)
Noneonstitutional ruler 2.95 2.41 310 288
(1.13) (1.37) (1.24) (1.29)
In{leader’s ethnic share) 5,46
(317
In{leader's ethnic share)? 1.70
) (1.02)
In(ESD,) 8.70
(4.06)
In{ESD )2 537
(2.68)
Log likelihood function® -22.24 -6.61 -19.79 =18.02
Sample size 67 67 67 67

“Standard errors in parentheses.
Yin column (2) this is the log of the conditional likelihood function corresponding to the conditional logit, and is
not comparable with the logit likelihoods reported in columns (13, (3), and {4).
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Case study: Londregan et al

The net impact of our ESD; variable is a weighted average of the coefficients of
the log of ESDy and its square. More precisely, the estimated impact is given by:

p'(=8) By + 2BoIn(ESD,)|
ESD,

Estimates of this effect are shown in Figure 2. These estimates are calculated for a
probability of nonconstitutional transition at the mean for the subsample of exit
observations: (L.82. There we see that for low values of ESDy the estimated impact
of an increase in ESD) on the probability a leadership transition is nonconstitu-
tional is negative. However, these estimated negative effects are statistically insig-
nificant, as indicated by the wide confidence bands, which encompass (. At higher
levels of ESD,, the effect reverses: for values above (.57, increases in ESD) sig-
nificantly increase the probability that leadership transitions take place by noncon-
stitutional means, This critical value is just below the sample median of (.63, so
that, for just over half of our sample, the effects of increasing the relative size of
the leader’s ethnic group are directly counter to the prediction of the hypothesis
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Case study: Londregan et al

Marginal Impact of ESD,

& L L L ) . L L
"o o2 0.3 0.4 0.5 0.6 a7 08 0.8 1.0
E8D;

F1c. 2, ESD; ws. its marginal impact on the probability a leadership transition takes place
nonconstitutionally.
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