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Outline

@ Philosophy
e Models of choice: review

e Axioms of choice and IIA
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A Dbit of philosophy

@ How to learn
» see one
» do one
» teach one
@ Arguments by authority
» are contemptible as an intellectual stance
» offer only reference for demonstration
» of course, there is usually a layer of deeper understanding that is
assumed

© what is our goal? ability to
» evaluate properties of statistical methods
what is it we learn from the use of a model? why?
» better map existing methods to application, and vice versa
evaluate suitability of application
choose better /proper methods
» extend and develop statistical
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Thurstone: discriminal process
With two choices, and ¢ iid Gumbel, then
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Generalized Choice: multinomial
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Definitions
Definition (Likelihood)

L(6 | y) is a known density evaluated as function parameter values ¢
given data y.

NOTE:
@ Likelihood of n observations

E(e|}/):£(‘9|}’1a}/27---,}’n):f(Y1,}’2a---aYn|9)

@ if iid observations

LO|yt,Y2,--s¥n) =Fy1 | 0)f(y2|0)---f(yn]0)

@ almost always easier to deal with natural log

L(O | y1, Y2, yn) =Y Z1(yi | 0)
n
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Definitions

Definition (MLE)
Maximum Likelihood Estimate (MLE) 4

Type l: L(0 | y) > L(0 | y) forall 0
Type ll: S(4 | y) =0

Definition (Score)

0
S(0]y)= @L(e | Y1, Y2, ¥n)

Jonathan Wand (Stanford University) Statistical Methods Ill: Spring 2013

Choice models: generalize Il

9/24



Likelihood for a dichotomous choice

Assume each y; is drawn independently.

What does independence imply for the joint probability of events?

Joint likelihood of n observations of choices,

n n
c=1lci=1IP00-p"
=1

And, log-likelihood,

L= ZL, = Z[y, log(p) + (1 = yi)log(1 — p)]
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Likelihood for a dichotomous choice

@ Homogeneous / same p for all draws

L= ZL = Z[y, log(p) + (1 = yi) log(1 — p)]

@ allow p; to differ by draws (i.e., by person)

Li = yilog(pi) + (1 — yi) log(1 — p;)

How many parameters would this require for n people?
@ reduce n unknowns to the k unkowns, with v being k-vector

Li = yilog(A(xiv)) + (1 — yi) log(1 — A(x;7))
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Likelihood for a dichotomous choice

Standard parameterizations for k-vector of covariates x;,

0 Probit:
a(x, ) = xﬂ
e F(xp) = X7 S exp{-%} = [*0 o(2) = o(xB)
6 LI =VYi IOg( (X/B)) + (1 - yi) IOg(1 - ¢(Xi6))

Q Logit
o a(X77) =Xy
@ F(xv)= m = A(x7)
@ Li=yjlog(A(xiv)) + (1 — yi)log(1 — A(xiv))
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Questions:

@ what does mnl imply about relationship between choices
@ how to interpret model? dP(y|x)/dx? P(y|x =1) — P(y|x = 0)?
@ whatis in u? endogeneity of choices?
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Spatial model

Consider three parties in unidimensional model

@ where should parties locate?
depends on whether there is threat of entry or not? stackleberg
equilibrium
most stat models treat location as given

@ what party should a party vote for?

@ how should voter make choice?
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Axiomatic Foundations of Choice Models

Assumptions
D1 LetRc ScTcU.
D2 Let x,y,z € T, arbitrary elements of choice set.

D3 Let P(x, y) be the probability of choosing x instead of y,
0< P(x,y) <1.

D4 Pg(R) is the probability of choosing R given choice from among
alternatives in S.

Choice Axiom
(i) Pr(R) = Ps(R)Pr(S)
(i) If P(x,y) =0forsome x,y € T, Pr(S) = Pr_,3(S — {x})
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Axiomatic Foundations of Choice Models

Axiom of Choice
@ Defines relationship which defines how choices within subsets are
related in the context of an individual making probabilistic choices.
@ Can be rewritten as Pr(R | S)Pr(S) = Pr(R)
@ Two core implications,

Lemma 3: Independence of Irrelevant Alternatives (I1A)
Theorem 3: Probability must satisfy a ratio scale
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Axiomatic Foundations of Choice Models

Lemma 3 (Independence from irrelevant alternatives):

For x,y € S,
P(x.y) _ Ps(x)

P(y.x) ~ Ps(y)
Proof:
By Axiom we have
Ps(x) = P(x,y)[Ps(x) + Ps(y)]

So

Ps(x) = P(x,y
Ps(x) = P(x,y
(1 - P(x,¥))Ps(x) = P(x,y
P(y,x)Ps(x) = P(x,y)Ps(y
P(x,y) Ps(x)
P(y, x) Ps(y)
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
What does this mean?

@ relative probability of choosing two alternatives is invariant to the
composition of the larger set of alternatives.

@ Only ratio is invariant, not probabilities themselves

@ Might also hear that log-odds of two choices are constant:
log(Ps(x)) —log(Ps(y)) = ¢
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
Why so cool?

@ can estimate parameters defining utility of choices even with only
a subset.

@ ** Not generally possible if IIA does not hold (e.g., correlation
between utilities of choices)—then to estimate any choice must
model all choices.

@ ** Neither holds in general for models of choice (by design) nor is
it plausible that it in general holds empirically.
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Axiomatic Foundations of Choice Models

Theorem 3: choice probability is ratio scale
Jv: T — R4, unique up to multiplication by k > 0, such that

ovx) 1
B Zyes V(y) B 1 + ZyeS—{x} V(y)/V(X)

McFadden and Yellot have each pointed out the connection to logit
models by setting v(x) = e*.

Ps(x)

E.g.,

v(x) e 1 B 1
(X)+v(y) ewx+ewr 14+ewv/ex {4 e ()

P(X’y): v

Yellot shows that discriminal process based on Type | discrete value
distribution is uniquely equivalent to Choice Axiom.
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Axiomatic Foundations of Choice Models

Let S € {1,2,3}, and Pg(j) be probability of choosing j from S,

1 e:u'1

PS(y - 1) - 1+ eH2—H1 4 @H3— - ert + eh2 | eHs
1 etz

Psly=2) = 1 f e—He + ela—tz el + eliz + el
1 eMs
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Axiomatic Foundations of Choice Models

Let T € {1,2}, and Pr(j) be probability of choosing j from T,
Recal logit (special case of MNL),

1 et
PT(y - 1) - 1+ ete—H1 - et + et
1 etz
Prly=2) = 1 L etz ekz + ez
So,
Prly=1) _ en
Priy=2)  er
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Axiomatic Foundations of Choice Models

Comparing probabilities of choosing 1 and 2 in logit and MNL,
Pr(1) _ e _ Ps(1)

Pr(2) — e Ps(2)

MNL conforms to Choice Axiom/IIA.

See Yellot (1977) and McFadden (1973) for connections between Luce
and EV Type 1.
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