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Generalized Choice: multinomial, example

Consider the vote choice of Australians in recent Parliamentary
elections:

Individuals at election time faced with choices, including
1 vote Australian Labor Party
2 vote Liberal Party
3 vote Australian Greens
4 vote National Party

NOTE: voting is mandatory (plausible to ignore abstention as choice).
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Generalized Choice: multinomial, 3 choices

Let y ∈ {1,2,3} index of choice.
where assume choice is between three parties,

1 party 1 utility u1 = µ1 + ε1
2 party 2 utility u2 = µ2 + ε2
3 party 3 utility u3 = µ3 + ε3
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Generalized Choice: multinomial, 3 choices

So we have three decision rules,
1 vote party 1 , y = 1, if u1 > u2 and u1 > u3

2 vote party 2 , y = 2, if u2 > u1 and u2 > u3

3 vote party 3 , y = 3, if u3 > u2 and u3 > u1

... and three probabilities
1 prob of voting for party 1, P(y = 1) = P(u1 > u2 & u1 > u3)
2 prob of voting for party 2, P(y = 2) = P(u2 > u1 & u2 > u3)
3 prob of voting for party 3, P(y = 3) = P(u3 > u2 & u3 > u1)
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Thurstone: discriminal process

With two choices, and ε iid Gumbel, then

P(j , k) = P(uj > uk )

= P(µj − µk + εj > εk )

=

∫ ∞
−∞

λ(εj)

∫ µj−µk+εj

−∞
λ(εk )

=

∫ ∞
−∞

λ(εj)Λ(µj − µk + εj)

=

∫ ∞
−∞

λ(εj)Λ(µj − µk + εj)

=
1
w

∫ ∞
−∞
−e−εj w exp{−e−εj w}

=
1
w

=
1

1 + exp{−(µj − µk )}
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Generalized Choice: multinomial
So, how to calc prob of voting for party 1 with three choices?

P(y = 1) = P(u1 > u2 and u1 > u3)

= P(µ1 + ε1 > µ2 + ε2 and µ1 + ε1 > µ3 + ε3)

= P(µ1 + ε1 − µ2 > ε2 and µ1 + ε1 − µ3 > ε3)

=?P(µ1 + ε1 − µ2 > ε2)P(µ1 + ε1 − µ3 > ε3)

no...

P(y = 1) =

∞∫
−∞

λ(ε1)P(µ1 + ε1 − µ2 > ε2 | ε1)P(µ1 + ε1 − µ3 > ε3 | ε1)

=

∞∫
−∞

λ(ε1)

 µ1+ε1−µ2∫
−∞

λ(ε2)∂ε2 ·
µ1+ε1−µ3∫
−∞

λ(ε3)∂ε3

 ∂ε1
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Generalized Choice: multinomial

P(y = 1) =

∞∫
−∞

λ(ε1)

 µ1+ε1−µ2∫
−∞

λ(ε2)∂ε2 ·
µ1+ε1−µ3∫
−∞

λ(ε3)∂ε3

 ∂ε1
=

∞∫
−∞

λ(ε1)Λ(µ1 + ε1 − µ2)Λ(µ1 + ε1 − µ3)∂ε1

=

∞∫
−∞

e−ε1e−e−ε1 e−e−(µ1+ε1−µ2)e−e−(µ1+ε1−µ3)
∂ε1

=

∞∫
−∞

e−ε1e−e−ε1 e−e−ε1 eµ2−µ1 e−e−ε1 eµ3−µ1
∂ε1
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Generalized Choice: multinomial

P(y = 1) =

∞∫
−∞

e−ε1e−e−ε1 e−e−ε1 (1+eµ2−µ1+eµ3−µ1 )∂ε1

=
1 + eµ2−µ1 + eµ3−µ1

1 + eµ2−µ1 + eµ3−µ1

∞∫
−∞

e−ε1e−e−ε1 (1+eµ2−µ1+eµ3−µ1 )∂ε1

=
1

1 + eµ2−µ1 + eµ3−µ1

P(y = 2) =
1

1 + eµ1−µ2 + eµ3−µ2

P(y = 3) =
1

1 + eµ1−µ3 + eµ2−µ3
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Generalized Choice: multinomial

Since,

1 = P(y = 1) + P(y = 2) + P(y = 3)

by rearrangement,

P(y = 3) = 1− P(y = 1)− P(y = 2)

which can also be seen by,

eµ3

eµ1 + eµ2 + eµ3
= 1− eµ1

eµ1 + eµ2 + eµ3
− eµ2

eµ1 + eµ2 + eµ3

What can be identified?
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Generalized Choice: multinomial

MNL only identifies differences in utilities (like logit...)

P(y = 1) =
1

1 + eµ2−µ1 + eµ3−µ1
=

1
1 + eµ∗

2−µ
∗
1 + eµ∗

3−µ
∗
1

P(y = 2) =
1

1 + eµ1−µ2 + eµ3−µ2
=

1
1 + eµ∗

1−µ
∗
2 + eµ∗

3−µ
∗
2

P(y = 3) =
1

1 + eµ1−µ3 + eµ2−µ3
=

1
1 + eµ∗

1−µ
∗
3 + eµ∗

2−µ
∗
3

Identification acheived by setting one utility to a constant.
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Generalized Choice: multinomial

Handy to use zero as the constant, since e0 = 1. Consider µj = xβj ,
then set βj = 0 for a single category j .

P(y = 1) =
1

1 + exβ2 + exβ3

P(y = 2) =
exβ2

1 + exβ2 + exβ3

P(y = 3) =
exβ3

1 + exβ2 + exβ3
= 1− P(y = 1)− P(y = 2)
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Generalized Choice: Absention due to indifference

Consider the vote choice in many parts of the US:
Individuals at election time are faced with three choices:

1 vote Democratic
2 vote Republican
3 or Abstain

Unlike other models of this fundamental choice process, Sanders
(1998) builds on a spatial theory of voting which posits that abstention
is result of indifference between parties.

Note: For easy introduction to this and more theory relating to spatial
model choices, see Munger and Hinich, Analytical Politics.
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Generalized Choice: Absention due to indifference

For some T ≥ 0,
1 vote D if UD − UR > T
2 vote R if UR − UD > T
3 abstain if −T < UD − UR < T

Same general framework as for logit or multinomial logit,

P(D) = P[(µD + εD)− (µR + εR) > T ]

= P[(µD + εD)− µR − T > εR]

=

∫ ∞
−∞

λ(εD)

∫ µD+εD−µR−T
λ(εR)∂εR∂εD

=
1

1 + exp{−(µD − µR)}eT

Similarly, we could calculate P(R).
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Generalized Choice: Absention due to indifference

Given P(D) and P(R), P(A) what is left over,

P(D) =
1

1 + exp{−(µD − µR)}eT

P(R) =
1

1 + exp{−(µR − µD)}eT

P(A) = 1− P(D)− P(R)

Additional extensions: Could also incorporate upper bound on
absolute distance (for alienation).
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Axiomatic Foundations of Choice Models

Assumptions
D1 Let R ⊂ S ⊂ T ⊂ U.
D2 Let x , y , z ∈ T , arbitrary elements of choice set.
D3 Let P(x , y) be the probability of choosing x instead of y ,

0 < P(x , y) < 1.
D4 PS(R) is the probability of choosing R given choice from among

alternatives in S.
Choice Axiom

(i) PT (R) = PS(R)PT (S)

(ii) If P(x , y) = 0 for some x , y ∈ T , PT (S) = PT−{x}(S − {x})
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Axiomatic Foundations of Choice Models

Axiom of Choice
Defines relationship which defines how choices within subsets are
related in the context of an individual making probabilistic choices.
Can be rewritten as PT (R | S)PT (S) = PT (R)

Two core implications,
Lemma 3: Independence of Irrelevant Alternatives (IIA)
Theorem 3: Probability must satisfy a ratio scale
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Axiomatic Foundations of Choice Models
Lemma 3 (Independence from irrelevant alternatives):
For x , y ∈ S,

P(x , y)

P(y , x)
=

PS(x)

PS(y)

Proof:
By Axiom we have

PS(x) = P(x , y)[PS(x) + PS(y)]

So

PS(x) = P(x , y)[PS(x) + PS(y)]

PS(x) = P(x , y)PS(x) + P(x , y)PS(y)

(1− P(x , y))PS(x) = P(x , y)PS(y)

P(y , x)PS(x) = P(x , y)PS(y)

P(x , y)

P(y , x)
=

PS(x)

PS(y)

Jonathan Wand (Stanford University) Statistical Methods III: Spring 2013 Choice models: generalize 23 / 10



Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
What does this mean?

relative probability of choosing two alternatives is invariant to the
composition of the larger set of alternatives.
Only ratio is invariant, not probabilities themselves
Might also hear that log-odds of two choices are constant:
log(PS(x))− log(PS(y)) = c.
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
Why so cool?

can estimate parameters defining utility of choices even with only
a subset.
** Not generally possible if IIA does not hold (e.g., correlation
between utilities of choices)—then to estimate any choice must
model all choices.
** Neither holds in general for models of choice (by design) nor is
it plausible that it in general holds empirically.

Jonathan Wand (Stanford University) Statistical Methods III: Spring 2013 Choice models: generalize 25 / 10



Axiomatic Foundations of Choice Models

Theorem 3: choice probability is ratio scale
∃v : T → <+, unique up to multiplication by k > 0, such that

PS(x) =
v(x)∑

y∈S v(y)
=

1
1 +

∑
y∈S−{x} v(y)/v(x)

McFadden and Yellot have each pointed out the connection to logit
models by setting v(x) = ex .

E.g.,

P(x , y) =
v(x)

v(x) + v(y)
=

eµx

eµx + eµy
=

1
1 + eµy/eµx

=
1

1 + e−(µx−µy )

Yellot shows that discriminal process based on Type I discrete value
distribution is uniquely equivalent to Choice Axiom.
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Axiomatic Foundations of Choice Models

Let S ∈ {1,2,3}, and PS(j) be probability of choosing j from S,

PS(y = 1) =
1

1 + eµ2−µ1 + eµ3−µ1
=

eµ1

eµ1 + eµ2 + eµ3

PS(y = 2) =
1

1 + eµ1−µ2 + eµ3−µ2
=

eµ2

eµ1 + eµ2 + eµ3

PS(y = 3) =
1

1 + eµ1−µ3 + eµ2−µ3
=

eµ3

eµ1 + eµ2 + eµ3

So,

PS(y = 1)

PS(y = 2)
=

eµ1

eµ2
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Axiomatic Foundations of Choice Models

Let T ∈ {1,2}, and PT (j) be probability of choosing j from T ,
Recal logit (special case of MNL),

PT (y = 1) =
1

1 + eµ2−µ1
=

eµ1

eµ1 + eµ2

PT (y = 2) =
1

1 + eµ1−µ2
=

eµ2

eµ2 + eµ2

So,

PT (y = 1)

PT (y = 2)
=

eµ1

eµ2
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Axiomatic Foundations of Choice Models

Comparing probabilities of choosing 1 and 2 in logit and MNL,

PT (1)

PT (2)
=

eµ1

eµ2
=

PS(1)

PS(2)

MNL conforms to Choice Axiom/IIA.

See Yellot (1977) and McFadden (1973) for connections between Luce
and EV Type 1.
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