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e Generalization
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Generalized Choice: multinomial, example

Consider the vote choice of Australians in recent Parliamentary
elections:

Individuals at election time faced with choices, including
@ vote Australian Labor Party

@ vote Liberal Party

© vote Australian Greens

© vote National Party

NOTE: voting is mandatory (plausible to ignore abstention as choice).
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Generalized Choice: multinomial, 3 choices

Let y € {1,2,3} index of choice.

where assume choice is between three parties,
@ party 1 utility uy = pq + €
Qo party 2 Utlllty Uo = o + €2
© party 3 utility us = uz + €3
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Generalized Choice: multinomial, 3 choices

So we have three decision rules,
@ voteparty 1,y =1,if uy > up and uy > U3
Q voteparty2,y =2,if uo > uy and u> > U3
© vote party 3, y =3, if u3 > up and us > uy

... and three probabilities
@ prob of voting for party 1, P(y
@ prob of voting for party 2, P(y
© prob of voting for party 3, P(y

1) P(U1 > U & Uy > U3)
2) = P(U2 > Uy & Up > U3)
3) = P(us > U & Uz > Uy)
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Thurstone: discriminal process

With two choices, and ¢ iid Gumbel, then
P(.k) = P(u > u)

P(uj — 1 + € > €x)
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Generalized Choice: multinomial
So, how to calc prob of voting for party 1 with three choices?

P(y =1) = P(uy > up and uy > us)

P(p11 + €1 > pp + €2 and g + €1 > pig + €3)
= P(u1 + €1 — p2 > e and puq + €4 — g > €3)
=?P(p1 + €1 — p2 > e2)P(p1 + €1 — iz > €3)

no...

o0

Ply =1) = /A(q)P(m +e1— 2 > €2 | e1)P(ur + €1 — 13 > €3 | €1)

0o H1t€1—p2 Hqt+e€1—p3
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Generalized Choice: multinomial

00 M€ — 2 M1 +€1— 3
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Generalized Choice: multinomial

o0
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Generalized Choice: multinomial

Since,

1 = Ply=1)+Ply=2)+P(y=3)

by rearrangement,

Ply=3) = 1-Ply=1)-P(y=2)

which can also be seen by,

eMs et etz

el + el + ek 1- el + el2 + eks el 4 el2 + ek
What can be identified?
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Generalized Choice: multinomial

MNL only identifies differences in utilities (like logit...)

1 1
Ply=1) = 1 el i1+ e | 4 gt b 4 gl i
1 1
PU=2) = Ty eomm ~ 11 en 15 4 on 7
1 1
Ply=3) =

14+ em—Hs 4 gla—H3 | | @i —H5 4 gl3—H;

Identification acheived by setting one utility to a constant.
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Generalized Choice: multinomial

Handy to use zero as the constant, since € = 1. Consider p; = x83;,
then set 3; = 0 for a single category ;.

]
PU=1 =3 + Xz - eXPs
exﬁz
Py=2) = ; + ez 4 e
eXPs
P(y=3) = 1-P(y=1)-Ply=2)

14 eXB2 4+ eXPs -
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Generalized Choice: Absention due to indifference

Consider the vote choice in many parts of the US:
Individuals at election time are faced with three choices:

@ vote Democratic
@ vote Republican
© or Abstain

Unlike other models of this fundamental choice process, Sanders
(1998) builds on a spatial theory of voting which posits that abstention
is result of indifference between parties.

Note: For easy introduction to this and more theory relating to spatial
model choices, see Munger and Hinich, Analytical Politics.
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Generalized Choice: Absention due to indifference

Forsome T > 0,
Q@ voteDifUp—Ug >T
Q voteRifUs—Up>T
Q abstainif -T<Up—-Ugr<T
Same general framework as for logit or multinomial logit,

P(D) = Pl(up+ep)—(pr+er) > T]
= Pl(up+ep) —pur—T > €g]

00 pup+ep—pp—T
= / Aep) A(er)9erdep
1

1+ exp{—(up — nr)}e’

Similarly, we could calculate P(R).
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Generalized Choice: Absention due to indifference

Given P(D) and P(R), P(A) what is left over,

1
D) = 1 +exp{—(up —nr)te’
P(R) = L

1+ exp{—(ur — np)}e’
P(A) = 1-P(D)—- P(R)

Additional extensions: Could also incorporate upper bound on
absolute distance (for alienation).
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Axiomatic Foundations of Choice Models

Assumptions
D1 LetRc ScTcU.
D2 Let x,y,z € T, arbitrary elements of choice set.

D3 Let P(x, y) be the probability of choosing x instead of y,
0< P(x,y) <1.

D4 Pg(R) is the probability of choosing R given choice from among
alternatives in S.

Choice Axiom
(i) Pr(R) = Ps(R)Pr(S)
(i) If P(x,y) =0forsome x,y € T, Pr(S) = Pr_,3(S — {x})
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Axiomatic Foundations of Choice Models

Axiom of Choice
@ Defines relationship which defines how choices within subsets are
related in the context of an individual making probabilistic choices.
@ Can be rewritten as Pr(R | S)Pr(S) = Pr(R)
@ Two core implications,

Lemma 3: Independence of Irrelevant Alternatives (I1A)
Theorem 3: Probability must satisfy a ratio scale
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Axiomatic Foundations of Choice Models

Lemma 3 (Independence from irrelevant alternatives):

For x,y € S,
P(x.y) _ Ps(x)

P(y.x) ~ Ps(y)
Proof:
By Axiom we have
Ps(x) = P(x,y)[Ps(x) + Ps(y)]

So

Ps(x) = P(x,y
Ps(x) = P(x,y
(1 - P(x,¥))Ps(x) = P(x,y
P(y,x)Ps(x) = P(x,y)Ps(y
P(x,y) Ps(x)
P(y, x) Ps(y)
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
What does this mean?

@ relative probability of choosing two alternatives is invariant to the
composition of the larger set of alternatives.

@ Only ratio is invariant, not probabilities themselves

@ Might also hear that log-odds of two choices are constant:
log(Ps(x)) —log(Ps(y)) = ¢
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
Why so cool?

@ can estimate parameters defining utility of choices even with only
a subset.

@ ** Not generally possible if IIA does not hold (e.g., correlation
between utilities of choices)—then to estimate any choice must
model all choices.

@ ** Neither holds in general for models of choice (by design) nor is
it plausible that it in general holds empirically.
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Axiomatic Foundations of Choice Models

Theorem 3: choice probability is ratio scale
Jv: T — R4, unique up to multiplication by k > 0, such that

ovx) 1
B Zyes V(y) B 1 + ZyeS—{x} V(y)/V(X)

McFadden and Yellot have each pointed out the connection to logit
models by setting v(x) = e*.

Ps(x)

E.g.,

v(x) e 1 B 1
(X)+v(y) ewx+ewr 14+ewv/ex {4 e ()

P(X’y): v

Yellot shows that discriminal process based on Type | discrete value
distribution is uniquely equivalent to Choice Axiom.
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Axiomatic Foundations of Choice Models

Let S € {1,2,3}, and Pg(j) be probability of choosing j from S,

1 e:u'1

PS(y - 1) - 1+ eH2—H1 4 @H3— - ert + eh2 | eHs
1 etz

Psly=2) = 1 f e—He + ela—tz el + eliz + el
1 eMs

Ps(y =3) = =

1+ e1—H3 | gla—H3 e + etz | eH3

Ps(y =1) et
Ps(y =2) ek
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Axiomatic Foundations of Choice Models

Let T € {1,2}, and Pr(j) be probability of choosing j from T,
Recal logit (special case of MNL),

1 et
PT(y - 1) - 1+ ete—H1 - et + et
1 etz
Prly=2) = 1 L etz ekz + ez
So,
Prly=1) _ en
Priy=2)  er
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Axiomatic Foundations of Choice Models

Comparing probabilities of choosing 1 and 2 in logit and MNL,
Pr(1) _ e _ Ps(1)

Pr(2) — e Ps(2)

MNL conforms to Choice Axiom/IIA.

See Yellot (1977) and McFadden (1973) for connections between Luce
and EV Type 1.
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