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Outline

@ Bartels (1996)

@ Preliminary facts and concepts
@ Follow/ play with /quiz in DB:lecture02/distribution.R
@ Derivation of logistic distribution

e Two approaches in deriving a theory of choice
@ Theory of comparative judgement: basics
@ Theory of comparative judgement: identification
@ Axioms of choice

e Upcoming topics

Jonathan Wand (Stanford University) Statistical Methods Ill: Spring 2013 Choice models: mathematical 2/64



Bartels (1996)

@ What is the question? What is at stake?

@ What specific choices does he study?

@ What types of things does he use to explain choices?
@ Some strengths of the study?

@ Some weaknesses? How would they potentially change
conclusion?
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Bartels (1996)

The model takes the form

prob(¥; = 1) = @Eyfow(l — WXy + o, WiXul), ey
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Bartels (1996)

The model takes the form

prob(¥; = 1) = @(Zifow(l — WXy + o WiXul), D

where Y; is respondent i’s reported dichotomous vote choice (1 for a Repub-
lican vote, 0 for a Democratic vote), W; is respondent i’s level of political
information on the 0 to 1 scale as estimated by the interviewer, X, is respon-
dent i’s observed score on characteristic k, o and @, are estimable parame-
ters reflecting the impact of characteristic k on the voting behavior of unin-
formed and fully informed respondents, respectively, and ® is the
cumulative normal (probit) function.
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Bartels (1996)

Table 1. Probit Parameter Estimates for Republican Vote
Propensity, 1992

Fully Information
Informed Uninformed Effect
Preferences Preferences (Difference)
Intercept —1.542 —.348 —1.194
(.766) (1.112) (1.673)
Age (years) —.0435 .0000 —.0436
(.0278) (.0389) (.0594)
Age squared (years) .000429 —.000045 .000474
) (.000278) (.00384) (.000590)
Education (years) .0962 .0017 .0945
(.0337) (.0536) (.0779)
Income (percentile) .399 .828 —.428
(.329) (.563) (.802)
Black —1.063 —2.285 1.222
(.319) (479) _ (.717)
Female —.420 .326 —.746
(.153) (.269) (.381)
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Distributions: notation

Standard Normal(0,1) pdf and cdf as, respectively,
ole) = — exp{ 62}
6 =
Vor 2

() = /_ " s(2)0z

Notes:

@ CDF has no closed form expression
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Distributions: notation

Type | extreme value (EV |; Gumbel) pdf and cdf as, respectively,
Ae) = e “exp{—e }

N(e) = exp{—e"}
Notes:
@ CDF has closed form expression

@ standard presentation makes no reference to parameters
like the standard normal, they are implicit

@ there exists a generalized gumbel,
and other variations on extreme value distributions
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A standard normal densty, ¢(x)
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Overlay a gumbel, A\(x)
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Overlay of gumbel \(—x)
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Density of the maximum value from standard normal
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Same distribution of maxima, rescaled
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Overlay gumbel

2.0

f(x)

EVD come from maxima with large n; \(x) is one of three classes.
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x1,x2 each drawn independently from ¢(x)

X2
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density of x1

f(x)
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overlay density of -x2

f(x)

00 01 02 03 04 05

Jonathan Wand (Stanford University) Statistical Methods Ill: Spring 2013 Choice models: mathematical 20/64



overlay density of x1-x2

f(x)
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x1-x2 is normally distributed

f(x)
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x1,x2 each drawn independently from A(x)
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f(-x2) overlay

f(x)
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f(x1-x2)

f(x)
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logistic distribution

f(x)
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Derivation of logistic distribution

Theorem
If Xy and X5 are i.i.d. Gumbel RV, then Xi — X> has cdf

Fy,—x(2) = ( logistic cdf )

1+e 2
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Derivation of logistic distribution

Let X be i.i.d. Gumbel RV
@ then cdf is,

z
:/ e “exp{—e*}dx
= exp{—e"*}

@ and keep in mind, equivalent statements

Nz) = Fx(z) = P(x < 2)
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Derivation of logistic distribution
Fx,—x,(2) = P(xy — X2 < 2)

=P(x2 <z+x1)
[ee) Z+Xq
_ / A(x1) / A(x2) dxadix

)\(X1 )/\(Z + X4 )dX1

e exp{—e ¥} exp{—e~(FT) ) dx

e Mexp{—e — e ?eM}dx

= / s exp{—e X — e~ (#t¥)1dx, [e e = ]

e Mexp{—e (1 + &°)}dx [a+ab=a(1+ b)]
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Derivation of logistic distribution
Fx,—x(2) = P(X1 — X2 < 2)

= P(X2 <Z-|-X1)

= /oo )\(x1)/z+x1 A(Xx2)dxodxq

—0o0 —00

[..]
— /Oo e Mexp{—e (1+€&”)}dxy [a+ab=a(1l+b)]

= V—VE/ e M exp{—e “"w}dxq [w=1+exp{—2z}]
= vlv / e M wexp{—e M w}dxq [€°9") — w]
1 00
= | e expi{-e}dy [y = xi + log(w)]
_ 1
w 1+e?
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Theoretical foundations of Choice models

Two main approaches to deriving models of discrete choice:
@ Discriminal process (Thurstone, 1927)
Most often associated with models of choice based on normal
distributions (probit)
@ Axiomatic derivation (Luce, 1959; McFadden)
Most often associated with models of choice based on logistic
distribution (logit)
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Thurstone: discriminal process

Logic of the discriminal process
@ Assume each object has a utility

» Thurstone deals with a single attribute, posits a psychological
continuum
» the utility for item J is defined as u;.

© Assume utility includes a random component.
» Thurstone used Normal distribution, but acknowledged
arbitrariness.
> U; = pi; + ¢; where ¢; ~ N(0, 0?)
© Individual picks item with the higher utility
» A relative comparison, requiring only simple inequality statements.
» choose item j over k if u; > uy.
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Thurstone: discriminal process
@ General binary choice, alternative j vs alternative k
P(j.k) = P(u > u)
= P(uj+ ¢ > pk + ex)
= P(uj — pk + € > €k)
TR )

@ If each € is iid Gumbel, then
P(j.k) = P(u > u)
= Py — pk > €k — €))
= P(z>6)=F(2)

where
> Z =k
> )= €k — €,
» and F is logistic cdf.
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Thurstone: discriminal process
Assume ¢ is iid Gumbel, then

P(j. k) uj > U)

P(
P(uj — 1 + € > €x)

= [T [

= [ M- )

= | M@y e+ )
LI A e
= W/_oo—e iwexp{—e Tw}

1 1

w1 rexp{—(y — )}
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Thurstone: discriminal process
Assume e is iid V(0, 0?)
Recall, for independent normal distributions

N (i, 0%) = Npj, 07) = N(pi — pj, 07 + 07)
So,

P(, k) = P(uj—uk>6k—6/)
/ﬂ/ Hk 22 P
—exXp z
\Jen O' +0k 2,/0 +ak
_ ¢ | P Hk
,/ajz—{—af
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Bartels (1996)

The model takes the form

prob(¥; = 1) = @(Zifow(l — WXy + o WiXul), D

where Y; is respondent i’s reported dichotomous vote choice (1 for a Repub-
lican vote, 0 for a Democratic vote), W; is respondent i’s level of political
information on the 0 to 1 scale as estimated by the interviewer, X, is respon-
dent i’s observed score on characteristic k, o and @, are estimable parame-
ters reflecting the impact of characteristic k on the voting behavior of unin-
formed and fully informed respondents, respectively, and ® is the
cumulative normal (probit) function.
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Bartels (1996)

Table 1. Probit Parameter Estimates for Republican Vote
Propensity, 1992

Fully Information
Informed Uninformed Effect
Preferences Preferences (Difference)
Intercept —1.542 —.348 —1.194
(.766) (1.112) (1.673)
Age (years) —.0435 .0000 —.0436
(.0278) (.0389) (.0594)
Age squared (years) .000429 —.000045 .000474
) (.000278) (.00384) (.000590)
Education (years) .0962 .0017 .0945
(.0337) (.0536) (.0779)
Income (percentile) .399 .828 —.428
(.329) (.563) (.802)
Black —1.063 —2.285 1.222
(.319) (479) _ (.717)
Female —.420 .326 —.746
(.153) (.269) (.381)
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Thurstone: what is identified?

For each individual i, let
@ X; be observed data
@ ~v; be a parameter

Consider three scenarios
@ Given u; = Xy,
@ Given p; = xvj, i.e., Xj = Xk = X
@ Given pj = Xy, i.e., v =1k =

Question: what can be identified in a discriminal model?
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Thurstone: what is identified?
Given,

1
1+ exp{—(nj — 1)}

and u; = Xy, consider what can be identified?

P(j,k) =

If X; = xx = x, then

1 1
1+exp{—x(yj—w)} 1+exp{—xp}

where 8 = v — k.

PG k) =

If 7j = vk = 7, then

1

PUR) = T exp B0y — %)}

where = .
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Thurstone: what is identified?

Given,

11 — Pk

2 2
,/aj -I-O'k

P(,k) = o

and u; = X;vj, consider parameters are identified?

If X; = xx = x, then

P(.k) = o [x—L—_ | =o(xp)
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Thurstone: what is identified?
Given,
PG k) = o LItk
A /aj2 + af
and u; = X, consider what can be identified?

If 7j = vk = 7, then

P(j.k) = o ((x,- = xk)#) = o ((% - x)B)

2 2
1/Uj —i—ak
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Logit and Probit, CDF

beta = (0,1)

0.8 1.0
I

0.6
I

P(y=11x)
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Logit and Cauchit (t), CDF

beta = (0,1)

0.8 1.0
I

0.6

P(y=11x)

0.4

0.2
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Axiomatic Foundations of Choice Models

Assumptions
D1 LetRc ScTcU.
D2 Let x,y,z € T, arbitrary elements of choice set.

D3 Let P(x, y) be the probability of choosing x instead of y,
0< P(x,y) <1.

D4 Pg(R) is the probability of choosing R given choice from among
alternatives in S.

Choice Axiom
(i) Pr(R) = Ps(R)Pr(S)
(i) If P(x,y) =0forsome x,y € T, Pr(S) = Pr_,3(S — {x})
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Axiomatic Foundations of Choice Models

Axiom of Choice
@ Defines relationship which defines how choices within subsets are
related in the context of an individual making probabilistic choices.
@ Can be rewritten as Pr(R | S)Pr(S) = Pr(R)
@ Two core implications,

Lemma 3: Independence of Irrelevant Alternatives (I1A)
Theorem 3: Probability must satisfy a ratio scale
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Axiomatic Foundations of Choice Models

Lemma 3 (Independence from irrelevant alternatives):

For x,y € S,
P(x.y) _ Ps(x)

P(y.x) ~ Ps(y)
Proof:
By Axiom we have
Ps(x) = P(x,y)[Ps(x) + Ps(y)]

So

Ps(x) = P(x,y
Ps(x) = P(x,y
(1 - P(x,¥))Ps(x) = P(x,y
P(y,x)Ps(x) = P(x,y)Ps(y
P(x,y) Ps(x)
P(y, x) Ps(y)
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
What does this mean?

@ relative probability of choosing two alternatives is invariant to the
composition of the larger set of alternatives.

@ Only ratio is invariant, not probabilities themselves

@ Might also hear that log-odds of two choices are constant:
log(Ps(x)) —log(Ps(y)) = ¢
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Axiomatic Foundations of Choice Models

Luce Lemma 3 (Independence from irrelevant alternatives):
Why so cool?

@ can estimate parameters defining utility of choices even with only
a subset.

@ ** Not generally possible if IIA does not hold (e.g., correlation
between utilities of choices)—then to estimate any choice must
model all choices.

@ ** Neither holds in general for models of choice (by design) nor is
it plausible that it in general holds empirically.
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Axiomatic Foundations of Choice Models

Theorem 3: choice probability is ratio scale
Jv: T — R4, unique up to multiplication by k > 0, such that

ovx) 1
B Zyes V(y) B 1 + ZyeS—{x} V(y)/V(X)

McFadden and Yellot have each pointed out the connection to logit
models by setting v(x) = e*.

Ps(x)

E.g.,

v(x) e 1 B 1
(X)+v(y) ewx+ewr 14+ewv/ex {4 e ()

P(X’y): v

Yellot shows that discriminal process based on Type | discrete value
distribution is uniquely equivalent to Choice Axiom.
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Axiomatic Foundations of Choice Models

Let S € {1,2,3}, and Pg(j) be probability of choosing j from S,

1 e:u'1

PS(y - 1) - 1+ eH2—H1 4 @H3— - ert + eh2 | eHs
1 etz

Psly=2) = 1 f e—He + ela—tz el + eliz + el
1 eMs

Ps(y =3) = =

1+ e1—H3 | gla—H3 e + etz | eH3

Ps(y =1) et
Ps(y =2) ek
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Axiomatic Foundations of Choice Models

Let T € {1,2}, and Pr(j) be probability of choosing j from T,
Recal logit (special case of MNL),

1 et
PT(y - 1) - 1+ ete—H1 - et + et
1 eH2
Prly=2) = 1 L etz ekz + ez
So,
Priy=1) _ e~
Priy=2)  er

Jonathan Wand (Stanford University)
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Axiomatic Foundations of Choice Models

Comparing probabilities of choosing 1 and 2 in logit and MNL,
Pr(1) _ e _ Ps(1)

Pr(2) — e Ps(2)

MNL conforms to Choice Axiom/IIA.

See Yellot (1977) and McFadden (1973) for connections between Luce
and EV Type 1.
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Bartels (1996)

Table 2. Likelihood Ratio Tests for Deviations from Fully Informed
Voting, 1972-1992

Probit Log Probit Log p-value for
Election Likelihood Without Likelihood With Difference:
Year Information Effects Information Effects Xon
1992 —1749.1 —729.0 .007
1988 —1705.7 —692.4 .183
1984 —769.4 —743.8 .0003
1980 —496.2 —482.1 135
1976 —781.5 —770.3 .384
1972 —858.4 —839.7 .015
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Bartels (1996)

From Equation (1) in the text, the impact of a one-unit positive change in X, on the
vote probability of a hypothetical voter who would otherwise vote for each candidate with
equal probability is

A prob(Y; = 1) = ®oyx (1 — W) + & Wi] —.50,
where W, is the voter’s measured level of political information, o, and ®, are the parameters

associated with characteristic k for totally uninformed and fully informed voters, respec-
tively, and .50 is the assumed baseline probability of a Republican vote. Thus, the estimated

effect of being Catholic among respondents with ‘‘very low’’ levels of political information

is
A prob(Y; = 1) = ®[—-.635 (.95) + .868 (.05)] —.50 = —.21,

where —.635 is the estimated effect of being Catholic among totally uninformed voters (from
the second column of Table 1), .868 is the estimated effect of being Catholic among fully
informed voters (from the first column of Table 1), the measured information level W; =
.05, and (1 — W;) = .95. By contrast, among respondents with ‘‘very high’’ levels of political
information W; = .95 and (1 —W;) = .05, so that the estimated effect of being Catholic is

A prob(Y; = 1) = ®(—.635 (.05) + .868 (.95)) —.5 = .29.
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Bartels (1996)

Female
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Information Level
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Bartels (1996)

The hypothetical ‘‘fully informed’’ Republican vote probability im-
puted to each survey respondent in the 1992 election is a function of the
respondent’s observed characteristics and the probit parameters estimated
in the first (‘‘fully informed’’) column of Table 1. In particular, applying
Equation (1) above, the hypothetical ‘‘fully informed’’ vote probability for
respondent i is

lim(W; — 1) [prob(Y; = 1)] = ®(Z[enXi]) 2
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Bartels (1996)

Table 3. Estimated Deviations from Fully Informed
Voting, by Presidential Election Year, 1972-1992

Average Aggregate
Deyviation (%) Deviation (%)
Election from Fully from Fully
Year Informed Vote Informed Outcome
1992 10.62 2.73
(1.50) (1.18)
1988 7.91 -3.01
(1.54) (2.13)
1984 11.80 4.87
(3.06) (2.05)
1980 11.70 —5.62
(2.38) (3.35)
1976 7.58 0.35
2.72) (2.20)
1972 8.28 1.71
(2.06) (2.20)

Jackknife calculations based upon parameter estimates in Tables 1
and 4 through 8.
Standard errors are in parentheses.
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